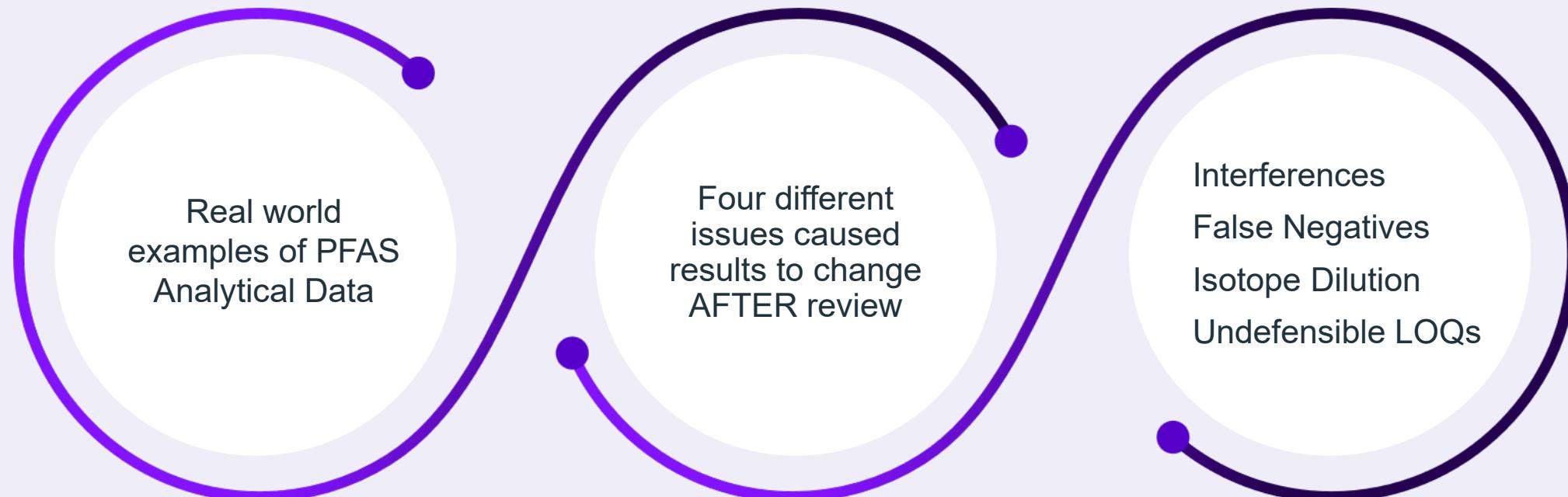


False Positives, False Negatives,
and Interferences:
A Deep Dive into the PFAS Data


January 21, 2026

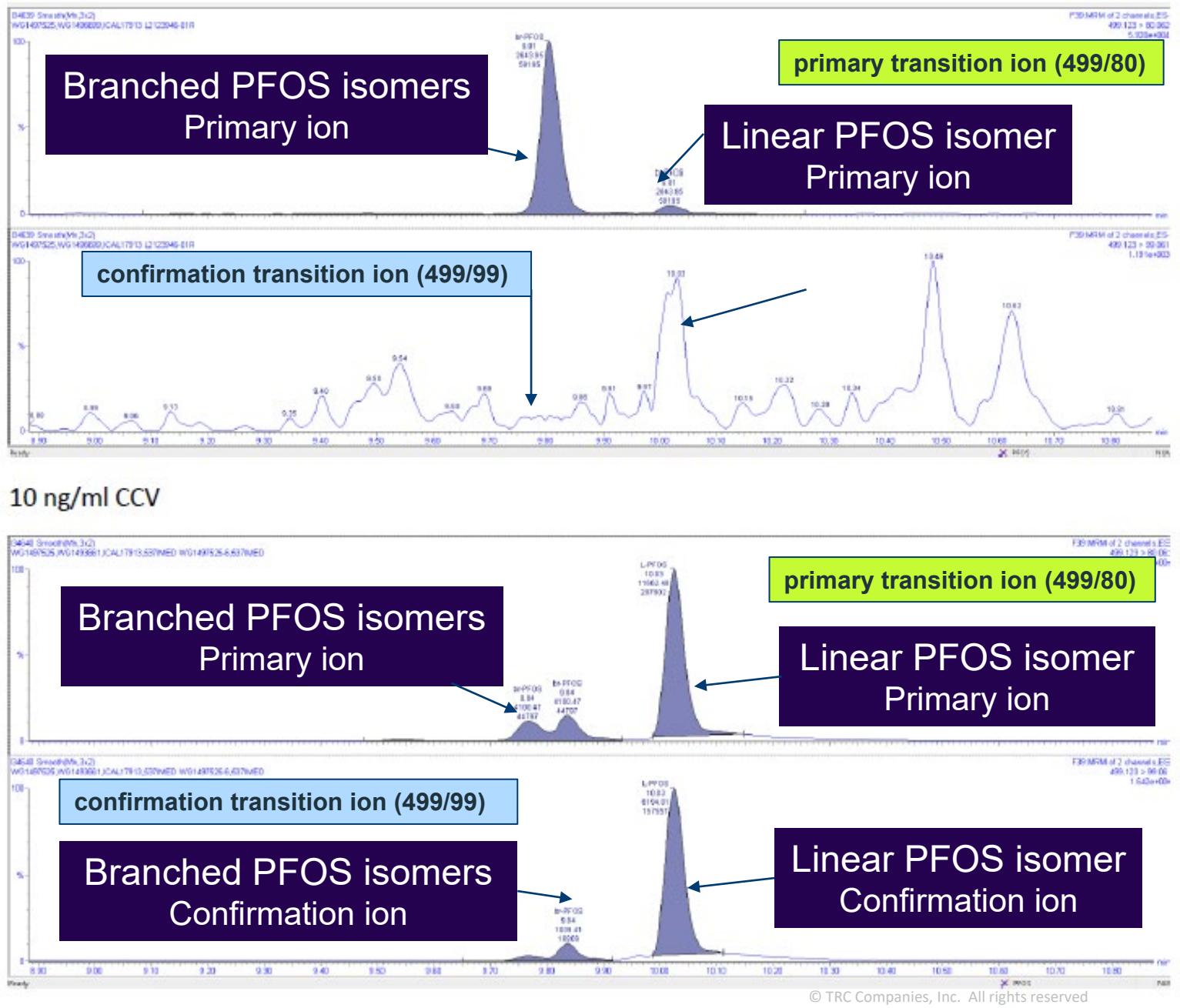
TRCCOMPANIES.COM

Today's Presentation

“Level 2” versus “Level 4” Data Packages

False Positives/ Interferences

TRCCOMPANIES.COM


Confirmation Ions: Why Important?

- **Definitive Identification of Compounds**
 - Retention time from HPLC separation
 - Transition to characteristic daughter ions (primary & confirmation ions)
 - Ion ratios
- **What happens when the ion ratios are outside limits?**
 - Potentially suspect positive result
 - Lab may qualify result
- **What if there is no confirmation ion?**
 - PFBA
 - PFPeA
 - NMeFOSE
 - NEtFOSE
 - PFMPA
 - PFMBA

Examples				
Analyte	Retention Time (min)	Primary/Confirmation Ions	Ion Ratio	Ion Ratio Limit
PFBS	4.79	299/ <u>80</u> 299/ <u>99</u>	2.91	1.35-4.05
PFOS	7.59	499/ <u>80</u> 499/ <u>99</u>	4.19	2.04-6.12
PFOA	6.16	413/ <u>369</u> 413/ <u>169</u>	3.0	1.72-5.10

NOTE:
EPA Method 1633A and 537.1 require the use of confirmation ions.
EPA Method 533 does not require confirmation ions.

Issue:

- Sample first analyzed using EPA Method 533 (not pictured here). **PFOS = 2,680 ng/L**
- Asked lab to reanalyze using Modified 537

Observations:

- PFOS peaks in sample did not produce ion ratio signatures similar to standard
- Not all branched isomers of PFOS produce same confirmation ion: can make identification of branched PFOS isomers questionable since not monitoring all confirmation ions

How Should Lab Report This?

- If 533, report as is.
- If 1633 or 537 mod, may vary by lab:
 - ND due to lack of confirmation ion
 - As is with knowledge that not all branched PFOS isomers produce same conf ion
 - As is with ion ratio qualifier

Ion Ratios out: Detection or Nondetect?

Bile Acid Interferences

Compound	Parent Ion	Primary Ion	Confirmation Ion
PFOS	499	80	99
TDCA	498	80	107
TCDCA	498	80	107
TUDCA	498	80	107

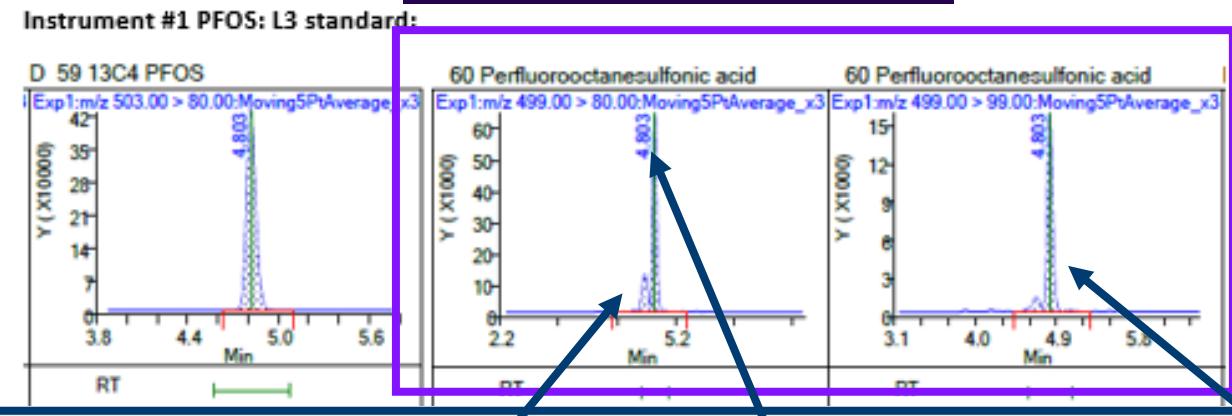
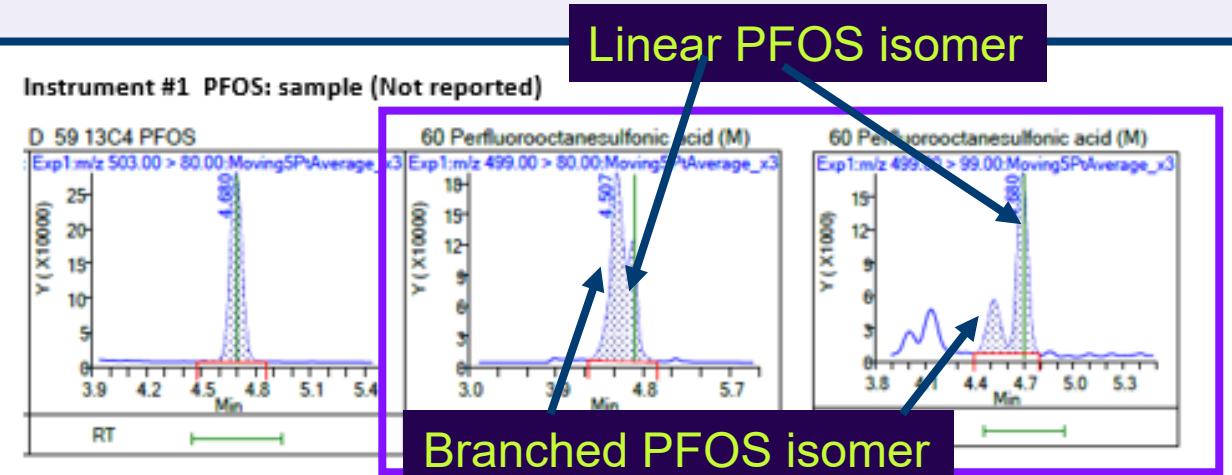
- PFOS reported as false positive in samples since Bile Acids have common transition ion (80)
- PFOS also measured using $499 \rightarrow 99$ allowing Interference to be eliminated

NPDES Monitoring of Effluent: False PFOS Result?

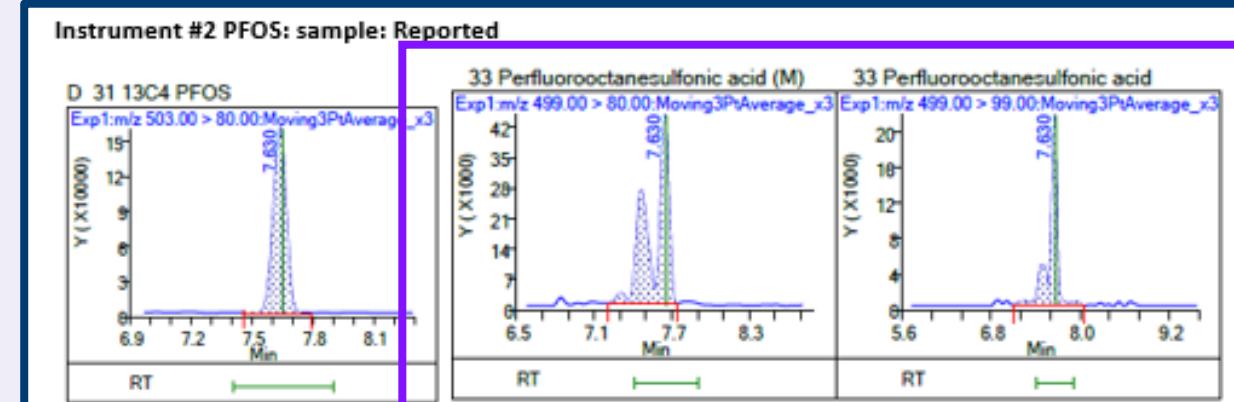
	Original Instrument #1	Confirmation Instrument #2	
PFOA (ng/L)	29	22	<ul style="list-style-type: none">* ICAL & CCAL ok both instruments* EIS %Rs ok both instruments* Ion Ratios ok both instruments
PFOS (ng/L)	78	21	<ul style="list-style-type: none">* ICAL & CCAL ok both instruments* EIS %Rs ok both instruments* Ion Ratios: outside limits instrument #1; ok instrument #2

ICAL = Initial Calibration

CCAL = Continuing Calibration



EIS = Extracted Internal Standards

%R = Percent Recovery


NPDES Monitoring of Effluent: False PFOS Result? (continued)

Instrument #1: PFOS: Ion Ratio Out: PFOS: 78 ng/L

Instrument #2: PFOS: Ion Ratio ok: PFOS: 21 ng/L

Confirmation ions for linear & branched

Bile Acid Interferences

Compound	Parent Ion	Primary Ion	Confirmation Ion
PFOS	499	80	99
TDCA	498	80	107
TCDCA	498	80	107
TUDCA	498	80	107

- PFOS reported as false positive in samples since Bile Acids have common transition ion (80)
- PFOS also measured using $499 \rightarrow 99$ allowing Interference to be eliminated

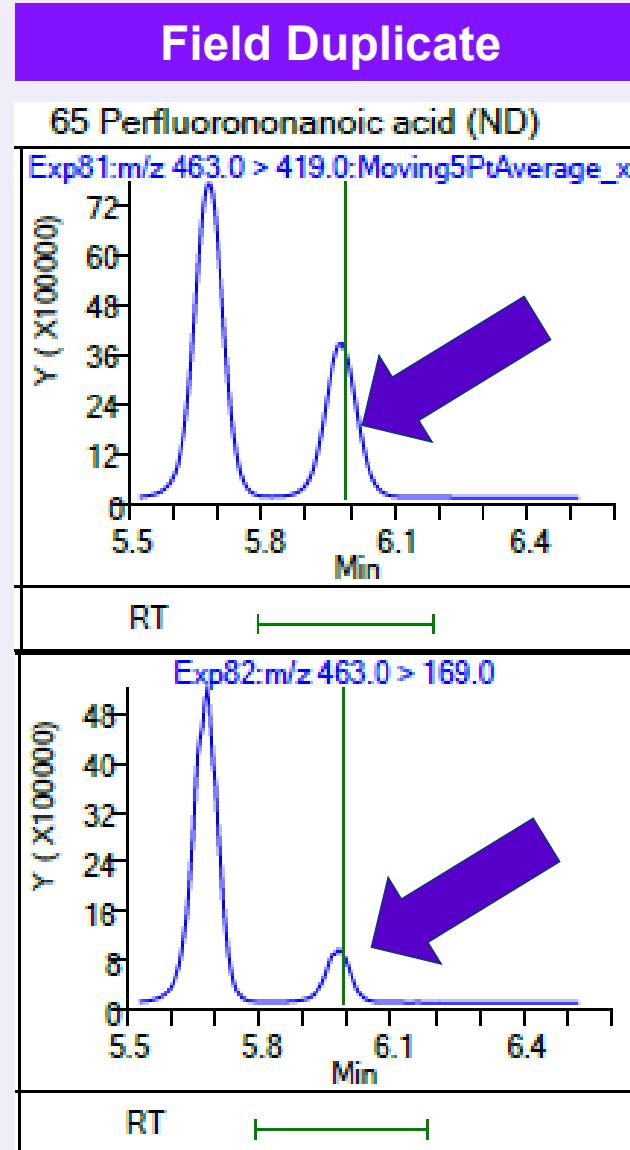
Lessons Learned

- Ask the lab when something does not look right.
- Ion ratio anomalies and interference with PFOS can be common.
- Think about this issue for any historical PFOS data you are looking at.
- Remember EPA method 533 does not require the use of confirmation ions.

False Negatives

TRCCOMPANIES.COM

Field Duplicate Results from Level 2 Report



PFAS	GW Sample (ng/L)	Field Duplicate (ng/L)
PFOA	33	31
PFBS	1.4 J	1.3 J
PFHxS	0.96 J	0.82 J
PFOS	5.4	5.0
PFNA	290	1.8 U

Issues:

- Reviewing a Level 2 Report
- PFNA results did not look right

Missing Peak Integrations

- We happened to also have Level 4 reports.
- Upon review, noticed PFNA not integrated in field duplicate sample.
- Requested lab revise and review all other data generated for project.

PFNA (ng/L)

Before	After
1.8 U	9.2
1.8 U	16
1.8 U	1.4 J
1.8 U	290
1.8 U	14
1.9 U	14
1.9 U	1700
1.9 U	350
1.9 U	620
1.9 U	350

Regulatory Criteria:
20 ng/L
(sum of 5 PFAS)

PFHpA (ng/L)

Before	After
1.7 U	12
1.9 U	22
1.7 U	11
1.7 U	7.5
1.8 U	14
1.8 U	1.6 J
2.0 U	23
1.7 U	5.9
1.8 U	9.0
1.8 U	6.7

Regulatory Criteria:
20 ng/L
(sum of 5 PFAS)

After Lab Reviewed all Peaks for Missing Integration

- Revised data showed false negative results originally reported
- Some of revised data went from ND to causing a regulatory criteria exceedance

Why Did This Happen?

- All errors were due to one analyst who was not properly trained
- Proper secondary review had not been performed in the lab to catch this error prior to reporting

Isotope Dilution *(but not really)*

TRCCOMPANIES.COM

Isotope Dilution

- **True isotope dilution:** response of target analyte is compared to response of its isotopically labeled analog (EIS). 24 target PFAS quantified in this way in EPA 1633.
 - 13C4-PFBA used to quantify PFBA
 - 13C8-PFOA used to quantify PFOA
 - 13C8-PFOS used to quantify PFOS
- **Extracted internal standard quantification:** response of target analyte is compared to response of isotopically labeled analog of another compound with chemical and retention time similarities. 16 target PFAS quantified in this way in EPA 1633.
 - 13C3-PFHxS used to quantify PFPeS
 - 13C8-PFOS used to quantify PFNS
 - 13C5-PFPeA used to quantify 3:3 FTCA

Table 10 in EPA 1633 defines which isotopically labeled analog (or EIS) is to be used for each target PFAS

Isotope Dilution: What is It?

- Sample spiked with KNOWN amount of extracted internal standards (EIS) (aka labeled surrogates)
- EIS match target analytes
 - $^{13}\text{C}_4\text{PFBA}$ is EIS associated with PFBA
 - $^{13}\text{C}_4\text{PFOS}$ is EIS associated with PFOS
- Target result corrected by proportional amount based on isotope
- **BENEFITS:**
 - Corrects for analytical error associated with matrix
 - Corrects for matrix interferences

Concentration Target = Target Area * True Concentration Isotope
Area EIS * Calibration Factor

EPA 537 and ASTM
Method do NOT utilize
isotope dilution

EPA 533, EPA 537
modified, and EPA
1633 use isotope
dilution

How Did The Lab Quantify PFAS?

Remember: EIS used to quantify PFAS should have chemical and retention time similarities to target PFAS (it is supposed to mimic behavior of target PFAS)

PFHpS

Quantified with:
13C6-PFDA

7-carbon sulfonic acid
quantified using
10-carbon carboxylic acid

5:3 FTCA

Quantified with:
13C8-PFOS

carboxylic acid
quantified using
sulfonic acid

PFNS,
PFDs

Quantified with:
13C7-PFUuA

9 and 10-carbon sulfonic acid
quantified using
11-carbon carboxylic acid

PFTrDA

Quantified with:
D7-MeFOSE

carboxylic acid
quantified using
sulfonamido ethanol

9CI-
PF3ONS

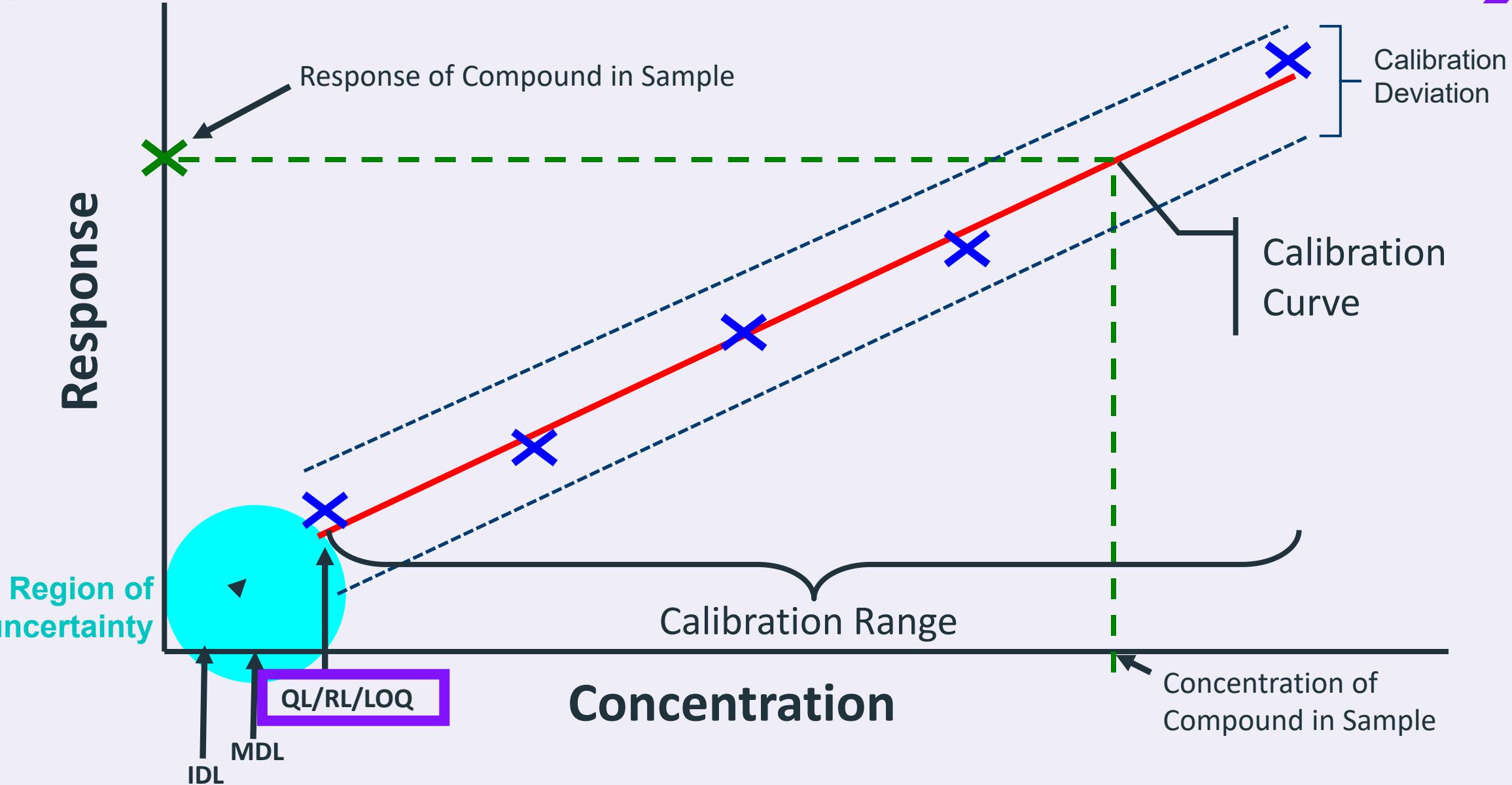
Quantified with:
13C4-PFHpA

ether sulfonate
quantified using
carboxylic acid

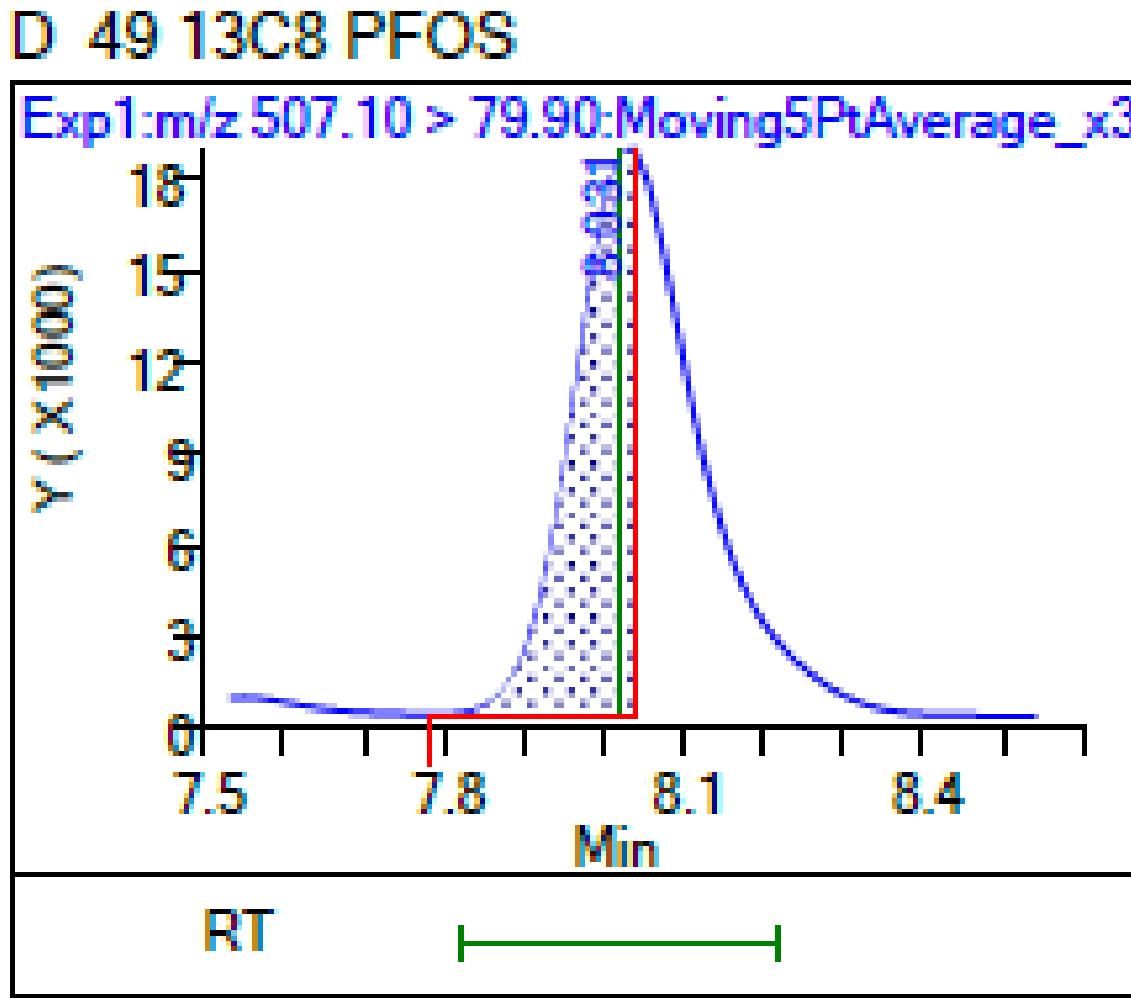
How Did This Impact Results?

Target PFAS	PFPeS	PFHpS	PFNS	PFDoS	PFDS	9CI-PF3ONS	11CI-PF3OUdS	3:3 FTCA	PFMPA	5:3 FTCA	7:3 FTCA
EIS Used by Lab	13C3-PFBS	13C6-PFDA	13C7-PFUnA	13C7-PFUnA	D5-EtFOSA	13C4-PFHpA	13C5-PFPeA	13C4-PFBA	13C4-PFBA	13C8-PFOS	13C8-PFOSA
EIS Required to be Used by Method	13C3-PFHxS	13C8-PFOS	13C8-PFOS	13C8-PFOS	13C8-PFOS	13C3-HFPO-DA	13C3-HFPO-DA	13C5-PFPeA	13C5-PFPeA	13C5-PFHxA	13C5-PFHxA
Sample 1											
%R of EIS Required to Be Used by Method	77%	51%	51%	51%	51%	55%	55%	10% *	10% *	43%	43%
%R of EIS Used by Lab	30%	49%	32%	32%	23%	63%	10% *	2% *	2% *	51%	63%
	Result biased high	No sig. effect	Result biased high	Result biased high	Result biased high	Result biased low	Result biased high	Result biased high	Result biased high	Result biased low	Result biased low

Undefensible Reporting Limits or LOQs


Reporting Limits by EPA 1633

Reporting Limit or
Limit of Quantitation
(LOQ) requirements
per EPA 1633:
established by the
laboratory through
calibration of the
instrument


The LOQ shall be set
at or above the
concentration of the
lowest initial
calibration standard
(the lowest calibration
standard must fall
within the linear
range).

Calibration

What Did We See?

- Low standard PFOS = 0.193 ng/mL
- Sample: 100.1 mL extracted to final volume of 5 mL
- **LOQ/RL should be ≥ 9.6 ng/L** ($0.193 \text{ ng/mL} \times 5 \text{ mL} / 0.1001 \text{ L}$)
- Reported LOQ/RL = 8 ng/L
- **Why was LOQ below lowest calibration standard concentration?**
- Lab dropped 2 lowest points in curve but did not raise LOQ.
- **Why did lab drop 2 lowest points in curve?**
 - They stated it was because %Rs of affected PFAS in Level 2 standard were $>200\%$ & outside criteria (70-130%)
- **Why were %Rs of affected PFAS in Level 2 standard $>200\%$?**
 - Because EIS was not properly integrated; only 50% of peak was integrated
 - Lab did not see this during their own review
- **Resolution:** Lab revising 20 data packages to correctly report LOQs and target PFAS concentrations in each sample by adding 2 lowest points back into calibration curve

Takeaways

If the data do not make sense to you, ASK THE LAB!

In general, labs are doing a good job with PFAS analysis but errors or poor judgment can happen.

Reviewing raw data (Level 4 reports) can be more costly but can also give you more assurance in accuracy of your data.

Thanks!

Call Us:

Elizabeth Denly

PFAS Initiative Leader & Chemistry Director

P: (978) 328-2551

Email Us:

EDenly@TRCCCompanies.com

Visit Us:

TRCCcompanies.com

TRCCOMPANIES.COM

