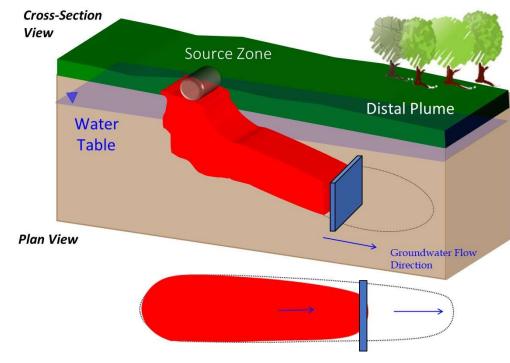


PERMEABLE REACTIVE BARRIERS (PRB)

- A PRB is a continuous, in-situ permeable treatment zone designed to intercept and remediate a contaminant plume.
- Contaminants may be treated through physical, chemical, and/or biological processes.

PERMEABLE REACTIVE BARRIERS (PRB)

Permeable

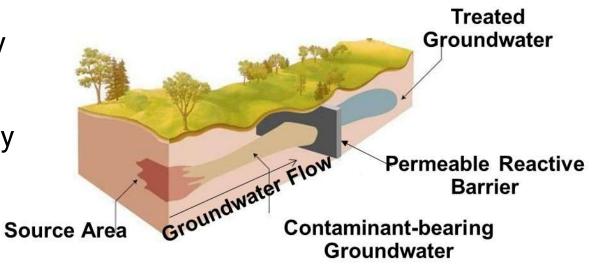

- Groundwater flows through
- Hydraulically passive
- Can be designed to be more permeable than the surrounding aquifer media

Reactive

 Reduce groundwater concentrations within PRB

Barrier

 Prevent contaminants from migrating beyond


www.isotec-inc.com

FULL SERVICE ENVIRONMENTAL REMEDIATION SINCE 1995

PRB REAGENT CHARACTERISTICS

- Persistent (years)
- Immobile or Limited Mobility
- Does not reduce permeability
- Solid or liquid reagents
 - Gas sparge curtain
 - Electrochemical (E-Redox®)

(ITRC, 2011)

APPLICABLE CONTAMINANTS

- Organic
 - Chlorinated VOCs
 - Petroleum hydrocarbons
 - Energetics (TNT, RDX)
 - 1,4-Dioxane
 - PFAS
- Inorganic
 - Nitrate
 - Metals
 - Arsenic
 - Radionuclides

Attenuation – PRB reduces contaminant mass (degradation, transformation)

Retardation – PRB removes contaminant from mobile form (precipitation, sorption)

Reversible processes

PRB REAGENTS - CHEMICAL REACTIVE

- Chemical Oxidation
 - Potassium persulfate
- Chemical Reduction
 - Zero valent iron (ZVI)
- pH Adjustment (metals)
 - Limestone

(Photo Credit: Hepure)

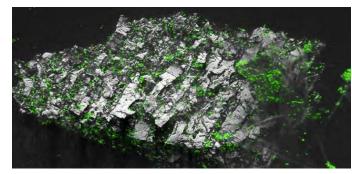
www.isotec-inc.com

FULL SERVICE ENVIRONMENTAL REMEDIATION SINCE 1995

PRB REAGENTS - ENHANCE BIODEGRADATION

- Bioremediation (Anaerobic)
 - Wood chips, mulch
 - Carbon substrate e- donor
 - (e.g., emulsified vegetable oil)

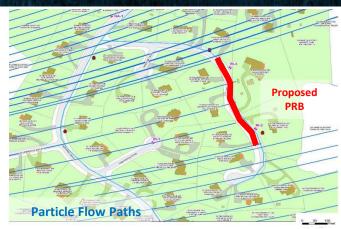
- Oxygen release compounds (e.g., calcium peroxide)
- Gas (Air Sparge / Biosparge)
 - Air / oxygen
 - Methane, propane

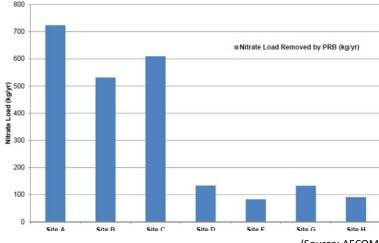


PRB REAGENTS - SORBENTS

- Activated Carbon
 - Granular (GAC)
 - Powdered (PAC)
 - Colloidal

1 lb. contains surface area to cover more than 90 soccer fields


- Zeolite (aluminosilicate minerals)
- Modified Clay
- Combinations
 - Activated carbon + clay minerals



LOCATING A PRB

- Location where reducing contaminant flux will support remedial goal
 - Flux [mass/time] = Concentration x Flow
- Perpendicular to groundwater flow (or near perpendicular)
- Access / Land Usage
- Downgradient Features

(Source: AECOM)

PRB PLACEMENT

 PRBs located according to remediation objective(s)

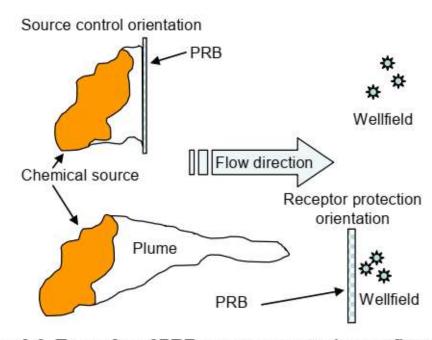


Figure 3-2. Examples of PRB receptor protection configurations.

(ITRC, 2011)

PRB versus TRANSECT

- Transect a line of injection points for a mobile reagent
 - (e.g., permanganate, sodium persulfate, e⁻ donors)
 - Not a Permeable Reactive Barrier

GW Flow Direction

Line of injection points located upgradient of building wall to apply oxidant to advect towards contamination under the building

www.isotec-inc.com

PRB INSTALLATION METHODS - SOLID SUBSTRATES

Trenching

Excavator

Max. 18-25 feet deep

One-pass trenching

■ 30 – 75+ feet deep

www.isotec-inc.com

FULL SERVICE ENVIRONMENTAL REMEDIATION SINCE 1995

PRB INSTALLATION METHODS - SOLID SUBSTRATES

Auger Boreholes (~12")

Cornell Cooperative Extension of Suffolk County (NY) – Molly Graffam, PhD

 \oplus

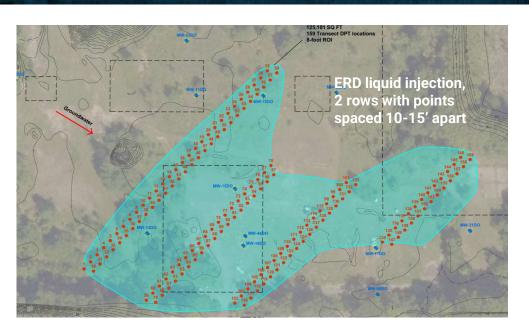
 \oplus

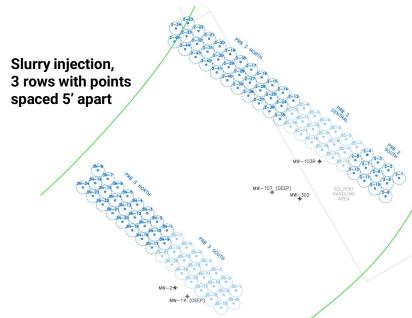
Cornell Cooperative Extension of Suffolk County (NY))

PRB INSTALLATION METHODS – INJECTION

Injection Wells

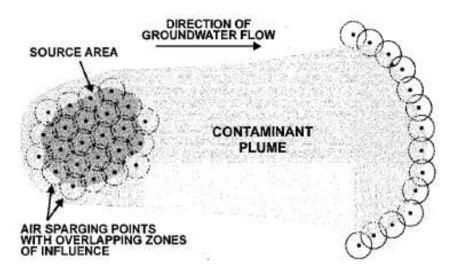
- + No depth restrictions (if rig can advance to)
- Fixed locations / intervals


Direct Push Injection Points



- + Flexible locations / vertical intervals
- Drilling restrictions

PRB INSTALLATION METHODS - INJECTION



- Rows (1, 2, 3...) PRB residence time, access
- Point spacing liquid vs. solid slurry

SPARGING

- Application of a gas to enhance biodegradation of contaminants
 - Air and/or oxygen
 - Methane, propane, butane

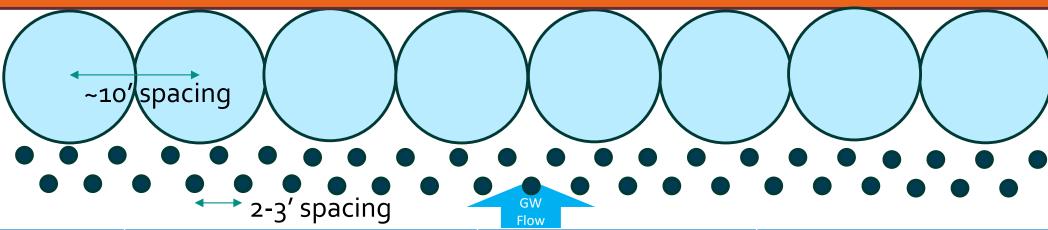
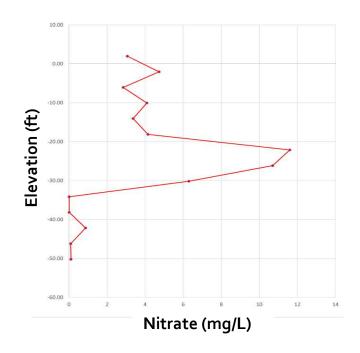

Biosparge Curtain is permeable, reactive, & a barrier

Figure 4.8 Air sparging point locations in a source area and in a curtain configuration.

PRB INSTALLATION METHODS - INJECTION



	Trench	Backfilled Boreholes	Injection Points
Benefits	-Continuous barrier -Longevity (15+ years) -Near surface water	-No depth restrictions -Longevity (10-15+ years) -Near surface water	-Larger residence time -No depth restriction -Less disturbance
Challenges	-Depth limitations -Larger equipment / Dewatering -Small residence time	-Small radius / residence time -Installation time	-Longevity (3-7+ years) -Set-back from surface water

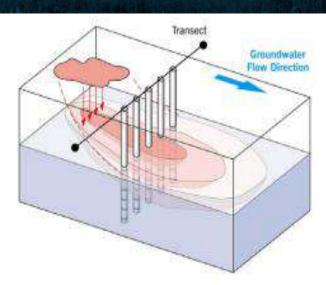
FAVORABLE CONDITIONS

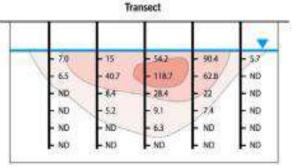
- Access
- Groundwater seepage velocity
 - Not too fast, not too slow (0.1 to 1-2 ft/d)
- Groundwater contaminant flux
 - Moderate to high
- Contamination vertically characterized

UNFAVORABLE CONDITIONS

- Above ground features
 - Buildings, surface water
- Subsurface Utilities
- Low permeability soils
 - <10⁻⁴ cm/s
- Groundwater seepage velocity
 - Slow (<0.1 ft/d)
 - Fast (>5 ft/d)
- Low contaminant flux

PRB DESIGN - DIMENSIONS

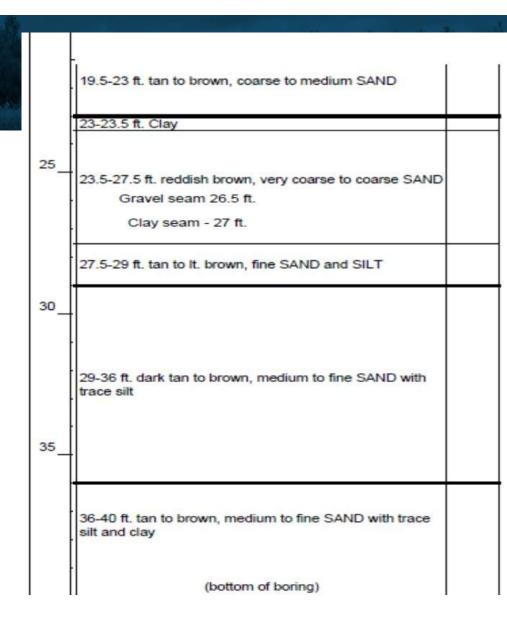

- Length (perpendicular to groundwater flow)
 - Identify where PRB would support remedial goal(s)
 - Access


Vertical

Identify where PRB would intercept flux

Width

- Provide adequate residence time
- Account for variations in groundwater flow direction and hydraulic conductivity

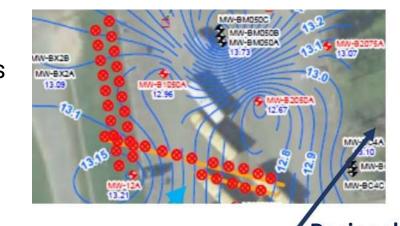


Source: Use and Measurement of Mass ⁵ Flux and Mass Discharge (ITRC, 2010)

www.isotec-inc.com

PRB DESIGN - HYDROGEOLOGY

- Geology and hydrogeology need to be understood laterally & vertically
 - Can vary across length of PRB
 - Groundwater velocity
 - Groundwater flow direction
 - Contaminant flux
- Not homogeneous environments


www.isotec-inc.com

PRB DESIGN - HYDROGEOLOGY (CONTINUED)

- Groundwater velocity (vs)
 - Hydraulic gradient (i)
 - Site-specific estimate using monitoring wells (for 1 event)
- Hydraulic conductivity (K)
 - Should obtain site-specific estimates using pumping tests or rising head/falling head tests
- Porosity (h)
 - 0.2 0.35
- Groundwater flow direction
 - Minimum of 3 wells oriented as a triangle

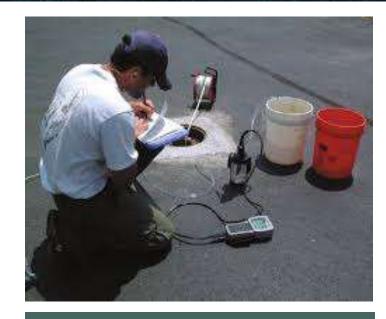
PRB DESIGN - REAGENT DOSAGE

- Contaminant Flux
 - Stoichiometry, bench-scale testing
- Non-target demand
 - Soil oxidant demand
 - Terminal electron acceptors
 - Other metals
- Over-dose vs. under-dose
 - Longevity / effectiveness
 - Cost, byproducts

FULL SERVICE ENVIRONMENTAL REMEDIATION SINCE 1995

PRB DESIGN - INJECTION VOLUME

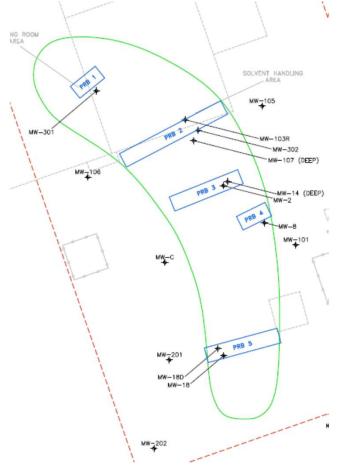
- Increased injection volume results in improved distribution and contaminant treatment
- 10% to 30% of total estimated pore volume within the PRB
- Site-specific considerations
 - Reagent type
 - Soil type/permeability
 - Injection depth
 - Subsurface utilities



FULL SERVICE ENVIRONMENTAL REMEDIATION SINCE 1995

PRB PERFORMANCE MONITORING

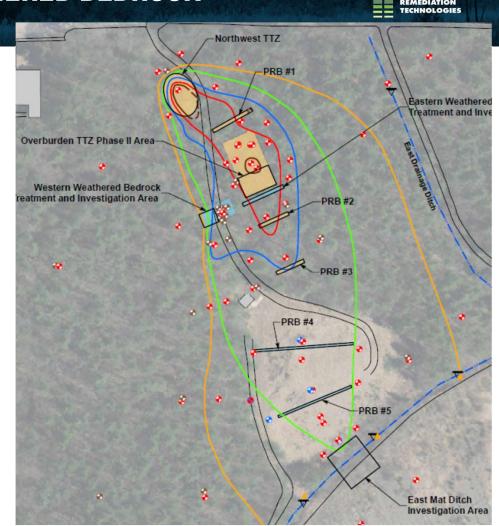
- Monitoring wells support understanding of treatment efficacy and when reagent needs to be replenished.
- Monitoring wells need to be located downgradient of PRB & at reasonable distances
- Contaminant(s) of concern
- Degradation products of remediation reagent
 - ERD carbon substrate -> total organic carbon
 - Sodium Persulfate -> sulfate & sodium
- Reaction Products
 - Metals
 - Reductive Dechlorination: lesser chlorinated products


Water quality field parameters (pH, DO, ORP)

ARE REALLY IMPORTANT!

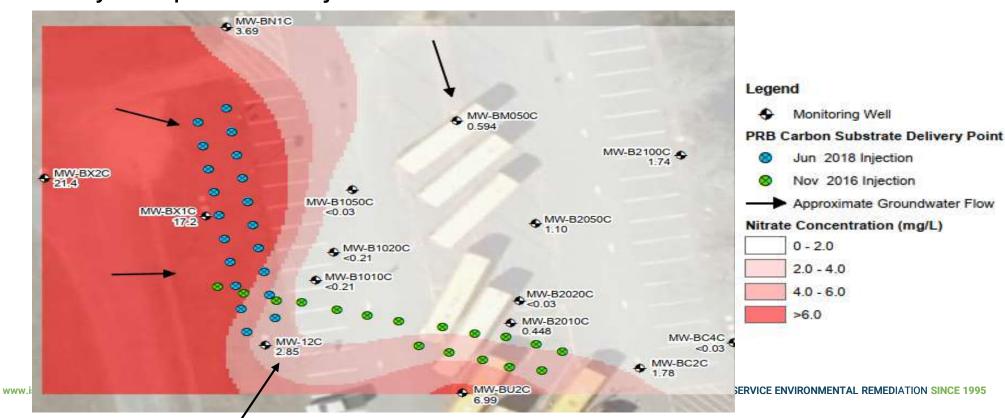
PRB EXAMPLES - DPT INJECTION POINTS

3-acre plume


www.isotec-inc.com

FULL SERVICE ENVIRONMENTAL REMEDIATION SINCE 1995

PRB EXAMPLES - OVERBURDEN & WEATHERED BEDROCK


- PCE plume in overburden and weathered bedrock
- Selected Remedy = enhanced reductive dechlorination
- Full Scale Treatment
 - Source area: injection point grids
 - 5 PRBs
 - 74 direct push injection points in overburden
 - 51 injection wells in weathered bedrock

PRB EXAMPLES - INJECTION POINTS FOR NITRATE

~5 years post EVO injection

LESSONS LEARNED – GW FLOW DIRECTION

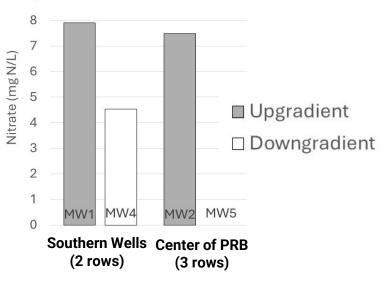
- Site-specific features influence groundwater elevation and flow direction
 - Stormwater retention tank, irrigation well, leachfield

LESSONS LEARNED – GW FLOW DIRECTION

Groundwater flow direction can vary seasonally

October

January


LESSONS LEARNED: INJECTION ROWS

- Multiple rows recommended
 - Minimize contaminant flowing through barrier without reaction
 - Increase residence time (safety factor)

Wood Chip Borehole Denitrification PRB 1-month post installation (high tide)

FULL SERVICE ENVIRONMENTAL REMEDIATION SINCE 1995

LESSONS LEARNED: WHEN TO REFRESH?

- Reagent consumed
- Contaminant degradation effectiveness / breakthrough
- Water quality parameters
 - For Anaerobic Barrier DO, ORP, electron acceptors (e.g., sulfate)

RECOMMENDED RESOURCES

Technical/Regulatory Guidance

Permeable Reactive Barrier: Technology Update

June 2011

Prepared by The Interstate Technology & Regulatory Council PRB: Technology Update Team Final

Design Guidance for Application of Permeable Reactive Barriers for Groundwater Remediation

Prepared for

Project Officer: Alison Lightner Air Force Research Laboratory Tyndall Air Force Base, Florida

Contract No. F08637-95-D-6004 Delivery Order No. 5503

By

Arun Gavaskar, Neeraj Gupta, Bruce Sass, Robert Janosy, and James Hicks

> BATTELLE Columbus, Ohio

March 31, 2000

Study sponsored by

PERMEABLE REACTIVE BARRIERS FOR REMOVAL OF NITRATE FROM GROUNDWATER THROUGH INJECTION OF EMULSIFIED VEGETABLE OIL Engineering Design Manual

JUNE 2023

PREPARED FOR:

SOUTHEAST NEW ENGLAND PROGRAM

PREPARED BY:

WOODS HOLE OCEANOGRAPHIC INST. 86 WATER STREET WOODS HOLE, MA 02543 www.whol.edu

IN-SITU OXIDATIVE TECHNOLOGIES, INC. 11 PRINCESS RB, STE A LAWRENCEVILLE, NJ 08648 wwww.isotec-inc.com

TERRA SYSTEMS, INC. 130 HICKMAN ROAD, STE I CLAYMONT, DE 19703 www.terrasystems.net

PRB SUMMARY

- Wide array of PRB options
- Small remediation footprint
- Cost effective groundwater treatment approach for large plumes
- Groundwater flow direction, velocity, and vertical contaminant distribution critical to design

THANK YOU

Chemical Oxidation & Surfactant Injections

Bioremediation

Activated Carbon Injectates

Soil Mixing

Metals Remediation

Bedrock Injections

Paul Dombrowski, P.E. (MA, NH, CT)
Director, Senior Remediation Engineer
pdombrowski@isotec-inc.com
617-902-3983

Treatability Laboratory

www.isotec-inc.com