

Successful remediation

1. Treatment Area Characterization

- Where is contamination?
- What is contaminant distribution?

2. Remedial Design

 Design remediation based on conceptual site model

3. Remedial Action

 Utilize remediation tools to implement the design

What makes a site a good candidate for In-situ approaches?

- Most sites are good candidates there are numerous tools available
- Are contaminant(s) amenable to in-situ remediation?
- What is subsurface geology?
 - Is soil permeable enough for moving fluid through pore space?
 - Liquids, slurries, or gases
 - Hydraulic conductivity > 10⁻⁵ cm/s
 - What are options for low hydraulic conductivity soils?
 - Hydraulic fracturing
 - Soil mixing
 - In-situ thermal remediation

In-Situ Remediation Toolbox

Petroleum Hydrocarbons

- Chemical Oxidation
- Enhanced Bioremediation
- Aerobic (biosparging)
- Anaerobic
- Injectable Activated Carbon with Treatment Mechanisms
- Surfactant Enhanced Remediation
- Fluid/NAPL recovery
- Thermal Remediation
- In-Situ Stabilization
- Combined Remedies

Chlorinated VOCs

- Chemical Oxidation
- Enhanced In-Situ Dechlorination
- Anaerobic bioremediation
- Abiotic dechlorination via reactive iron (ZVI, FeS)
- Injectable Activated Carbon with Treatment Mechanisms
- Thermal Remediation
- Surfactant Enhanced Remediation
- Fluid/NAPL recovery
- In-Situ Stabilization
- Combined Remedies

Metals

- Chemical Reduction
 - Calcium Polysulfide
 - FerroBlack / FeS
- Chemical Fixation (As)
 - Stabilized hydrogen peroxide and added iron

1,4-Dioxane

- Chemical Oxidation
- Combined Remedies
- Thermal Remediation

Feasibility Study

- What are the contaminants?
- Impacted area
 - Hot-spot, plume (PRB?)
- Depth of contamination
- Current Site Use / Future Site Use
- Remediation objective / Criteria
- Remediation schedule
- Budget

Technology screening a critical step (Universe of Possibilities)

Feasibility Study (Screening)

	EFFECTIVENESS		IMPLEMENTABILITY	COST				
	Advantages	П	Advantages	Advantages				
N.	Treatment technology has been shown to be effective in reducing mass of BTEX and chlorinated VOCs. Treatment is performed in a short time period. Does not generate large amounts of waste material.	•	Easily implemented because remedial actions are limited to oxidant injection and monitoring. Does not require particular geochemical conditions.	•	Capital costs are relatively low. Does not generate large amounts of waste material requiring disposal.			
	Disadvantages		Disadvantages	Disadvantages				
27	Change in groundwater pH and/or oxidation state can increase mobility of several metals.		More than one oxidant injections may be required, depending on the oxidant chosen, and based on the elevated concentrations present. Delivery of injected substrates less effective in lower permeability soils	•	Long term monitoring costs required to demonstrate remediation effectiveness.			

- Technology
 screening is a
 critical step in
 remedy selection
- Determines what technologies should (& shouldn't) undergo detailed evaluation

Remediation Planning Questions

- "Is there sufficient understanding to enable Remediation Decision Making?"
 - Where does remediation need to target?
 - Is the Conceptual Site Model adequately developed?
 - Should bench-scale and/or pilot-scale testing be performed?

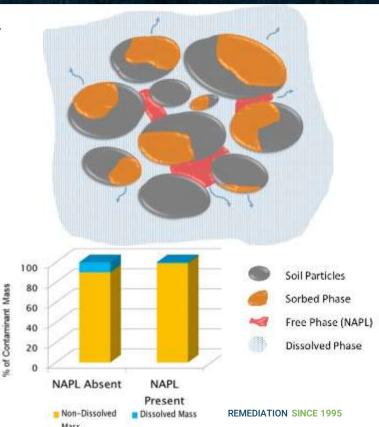
- Characterization resolution required for remediation <u>is higher</u> than for delineation
 - Delineation checks if contamination is present
 - Remediation needs to understand how to target the contamination

Remediation Characterization

- Delineation tells how big the cake is
- Remediation characterization tells what is inside the cake to know how to eat it

characterization Resolution

- Most data is groundwater
 - 10' screens common
- Soil data often old and 1 or 2 intervals per boring
- Contaminant concentrations can vary orders of magnitude over small intervals


Depth	\$8-19	SB-20	58-21	SB-23	SB-24	SB-26	SB-27	SB-26	\$8-30	SB-31	SB-32	SB-33	SB-34	SB-35	SB-36	\$8-39	2
23			3,370			14,000	******	1000	3,420			-			TO THE REAL PROPERTY.	-	
24	219		ND	1,650		ND						5,760			258		
25		ND	7,180				9,390	214	17,000	4,500	7,050	1000	643	789		4,650	CHANGE &
26	ND.		32,200	6,770	5,460	4,030						15,000					GW Hig
27		13,900						ND	6,440	ND	7,720	28,200	13,700	14,300	218	ND	Cur.
28	5,830	ND.	2,370	1,480	473	ND	111	ND		28,600					1,610	1,510	GW Avg
29	153			ND				137	165	12,600	6,500	753	9,330	82		ND	GW Los
30		2,910	258			104							ND			3,170	GW. LOI
31				25,900	ND		412				248	ND	3,060	ND	ND	306	
32		94								ND				5,590		498	
33				270			觀						ND				
34				137	729						ND			333		ND.	
35																	
36					118					1 2			17	ND			

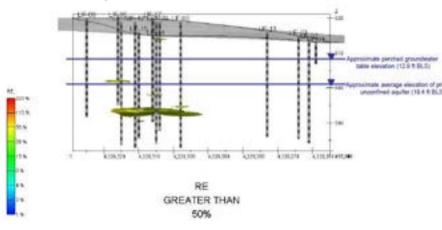
 Goal is to develop a surgical remediation plan

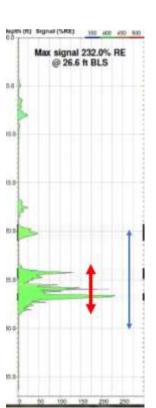
Contaminant Phase Distribution

- Many in-situ remediation technologies react directly with aqueous phase contamination
- Most contaminant mass Not in Aqueous Phase
 - Sorbed to Soil
 - NAPL
 - Long term source / source of rebound

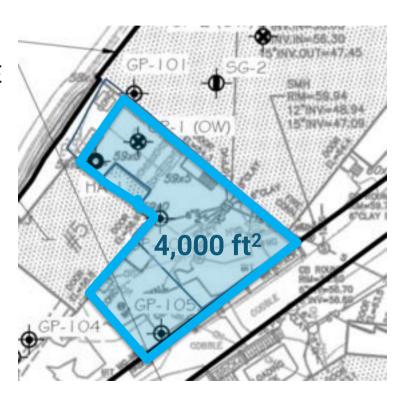
Heterogeneity

Many models and equations assume homogenous and isotropic




10' x 10' x 10' test pit

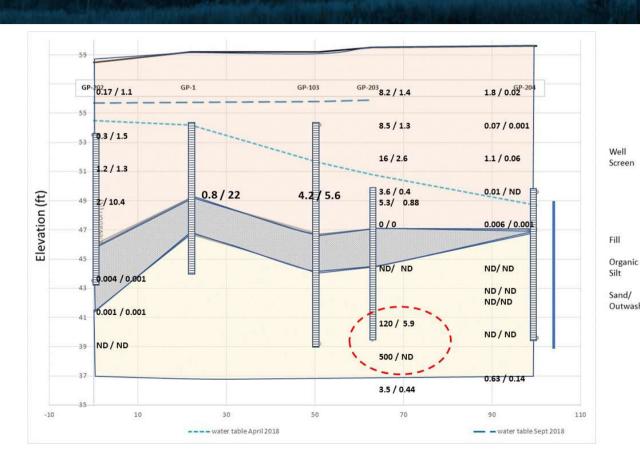
Follow the Contaminant, Not the Sample


- ISCO requested for 10' injection interval (20-30') corresponding to MW intervals
- Silty sands and clays
- Targeted Remediation based on Collaborative Data
 - High permeability pebble lens at ~25' bgs
 - Correlates to highest
 LNAPL detection in LIF



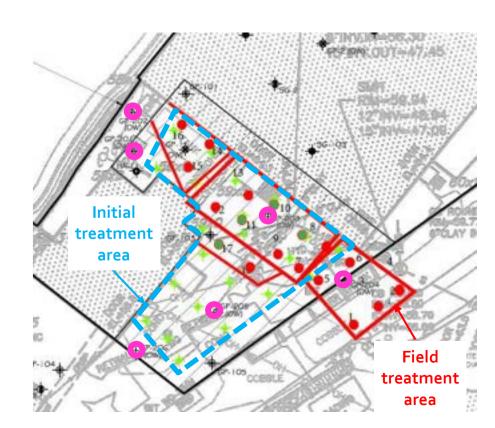
- Redevelopment at Former Mill Facility
- Groundwater and Soil Impacted by PCE and TCE
- Site Soils
 - Fill (sand, gravel, brick, wood) top 5-10 feet
 - Organic deposit (silt & sand) to 12-15' bgs
 - Outwash beneath organic deposit
- Preliminary Treatment Plan
 - 4,000 square feet
 - Injection Interval: 7-15' bgs
 - Focus on fill and organic deposit
 - Based on limited, historic information

- PreliminaryTreatment Plan
- Based on 2 monitoring wells & 1 soil sample at each boring
- Soil concentrations (mg/kg)
- Focus on fill and organic silt


Well Screen

Fill Organic

Sand/ Outwash



- 6 additional soil borings
- Soil samples collected every 2.5'
 - PCE / TCE soil concentration (mg/kg)

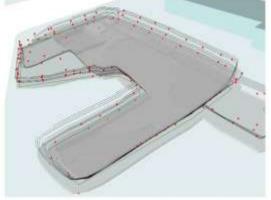
- Remedial Design Characterization
 - 6 borings/monitoring wells (pink dots)
 - Soil samples every ~2.5 feet
- Remedial Design Modification
 - Smaller treatment area (2,750 sf vs 4,000 sf)
 - Added treatment area to south
 - Deeper Treatment Interval (6-21' bgs)
 - Similar overall treatment volume (and cost)
- Apply remediation where it is needed!

Remediation Excavation

- Physical removal of contaminated material (soil, sediment)
 - Can also remove tanks, drums, pipes
- Readily available equipment

Widely accepted technology

Relatively fast implementation



Remediation Excavation

- When Might "Dig & Haul" Be the Best Option?
 - Schedule
 - Accessible
 - Shallow
 - Unsaturated soil
 - Well-delineated contamination
 - Excavation as part of redevelopment

FULL SERVICE ENVIRONMENTAL REMEDIATION SINCE 1995

Remediation Excavation

- When Might "Dig & Haul" NOT Be the Best Option?
 - Subsurface Utilities
 - Depth
 - Adjacent Buildings
 - Contamination below water table
 - Receptors
 - Disposal options/cost
 - Regulatory preference for destruction

Mitigations

Benching

Requires shoring

Dewatering

Odor/dust control

Monitored Natural Attenuation (MNA)

- Natural attenuation relies on natural processes to decrease or attenuate" contaminants in soil and groundwater <u>without human intervention</u>.
 - Biodegradation, dispersion, dilution, sorption, volatilization, chemical reaction, or transformation.
- Monitored natural attenuation involves collecting soil and groundwater samples to assess contaminant concentrations and other site characteristics.
 - MNA is not a "do nothing" alternative

A Citizen's Guide to Monitored Natural Attenuation

iorinolea Natata Alteriaaliori

What is Manifored Natural Attenuation?

Natural otteraution relies on natural processor to decrease or "alternated consummations at antiamments in our and general-water. Sciences received frees conditions to make some extraol attenuation in working. Monitoring hypically evident obliciting soit and groundweller samples to available from for the prepared of conformation and other silo-maniformation. The writer process is called "restricted solural alternation" at "Mark. "Markal othersation occurs air most conformation dates. However, the religion of the conformation of the condition of the condition of the condition of the condition of the ensurement Mark continues to work.

How Does If Work?

When the erectament is contempted with harmful stranscale, nature may sort in the ways to show it us:

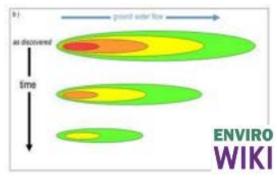
Bisinguebilori occurs when very small regiments, loceries introduces, relationshires and changes, loceries introduces, relationshires and and change is ment on small endures of water and genural-male and some recroises use some similar of the analysis of Collecti Collection for Modern America, 10 Collecti Collection of Modern America, 10 Collecti Collection of Modern America, 10 Collecti (Medical Collection of Modern America).

- Sorphin causes contaminants to shot to sell particles. Sorphin time not stealing the curtaminants, but it leads their true moving Segue underground or fore leaving the sale with progratewise time.
- Dilution decreases the concentrations of contemporarie as they move through and mis with clean proundwater
- Expection causes were contentrately like gaseline and reducted solverie, to charge from loads to gales within the self. If these gases scope to the air at the ground surface, air selfdiate them and surjight may dealing them.
- Chemical reactions with network substances and agranged may convert contaminates into seas harmful forms. For counspile, in low-dogger environments: Lindargement, the legity socicitomisms of contaminated to a reach lives local and nooble form called therefore if when it makes with notatile contemps into and valer.

Affects within land whom the source of contemination has been presented. For instance, any vasile barried underground make the source of the properties of the properties of the properties of properties of instances of the properties of a properties of the properties

How Long Will It Take?

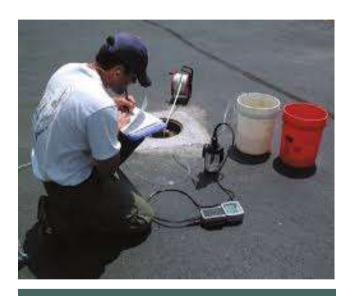
ARWA may take soverall years to decodes to clean up a site. The action cleanup time will depend on several factors. For example, cleanup will take longer when


- · Comminant reconstrations are higher
- The contaminated west is larger
- Sile-conditions (such as temperature, groundwater flow, soil type) provide a test favorable environment for bookegradation, according or officials.

These factors viery from alte to star.

Monitored Natural Attenuation

- Natural attenuation occurs at most contaminated sites (to some extent)
 - Do the right conditions exist?
- Existing trend
- Biodegradation



Evolution of a plume when the source and concentrations in groundwater both attenuate

Monitoring parameters – what to look for?

- Contaminant(s) of concern
- Contaminant Reaction Products
 - Reductive Dechlorination:
 - Lesser chlorinated daughter products
 - ethene & ethane
 - Petroleum: CO₂, CH₄
- Target bacteria
- YSI Parameters
 - DO, pH, ORP, specific conductivity, temperature
- Electron acceptors (for bioremediation/MNA)
 - Nitrate, Mn, Fe, sulfate

Water quality field parameters (pH, DO, ORP)

ARE REALLY IMPORTANT!

Recommended Resources

https://enviro.wiki/index.php?title=Main_Page

https://serdp-estcp.mil/

https://clu-in.org/remediation/

- EPA Citizen's Guide to Excavation of Contaminated Soils https://semspub.epa.gov/work/HQ/189970.pdf
- EPA Citizen's Guide to Natural Attenuation

 https://clu-in.org/download/Citizens/a_citizens_guide_to_monitored_natural_attenuation.pdf
- USGS A Framework for Assessing the Sustainability of Monitored Natural Attenuation

https://pubs.usgs.gov/circ/circ1303/pdf/circ1303.pdf

Thank you

Chemical Oxidation & Surfactant Injections

Bioremediation

Activated Carbon Injectates

Soil Mixing

Metals Remediation

Bedrock Injections

Paul Dombrowski, P.E. (MA, NH, CT)
Director, Senior Remediation Engineer
pdombrowski@isotec-inc.com
617-902-3983

Treatability Laboratory

Complexities Above and Below Ground

