

5/8/2025

ENVIRONMENTAL SOIL AND GROUNDWATER SAMPLING

Procedures for Collecting Representative Data during Site Assessment Field Work

Nick Guidi Senior Environmental Scientist Kristi Gagnon

Nicholas Granata Project Environmental Scientist Principal Environmental Scientist

Tighe&Bond

2

SOIL SAMPLING

Current Methodology and Key Factors for Success

SOIL SAMPLE COLLECTION

Planning for Assessment

- Site Access
- Spatial and Overhead Concerns
- Utility Concerns
- Damage from Equipment Treads
- Sensitive Receptor Areas
- Property Restoration

Methods and Equipment

- Soil Sampling Accessibility
 - Utility Concerns
 - Minimal Site Disturbance
 - Precise Soil Sampling
- Bucket Auger
 - Extensions Available
- Dutch Auger
 - Easy collection of soil in heavily ro areas
 - Good for both hard or wet soils
- Hand Trowel

Excavators

- Best Visibility Option
- Best Method for Evaluating Fill
- Bladed Bucket versus Toothed Bucket

Flush Joint Casing (FJC) Drill Rig (Drive and Wash)

- "Cased" boring advanced with hammer
- Split Spoon Samplers
- 24" Sampler Hammered into the Ground
- Advanced in 6" Increments
- Most Accurate Vertical Sampling
- Indications of soil compaction
 - -Low N-values = softer soils
 - -Higher N-values = denser soils
- Considerations
 - -Time Factor
 - -Poor Recovery
 - -Height Constraints
- Allows sampling below water table
- Best for deep samples/wells (50 ft +)

Hollow Stem Auger (HSA) Drill Rig

- Utilizes a Rotary Cutting Head
- "Screw" motion clears soil when augers are rotated
- Hollow Stem Augers act as Casing
 - Prevents Cave In
 - Limits Cross Contamination
 - Allows for Enhanced Sand Pack for Groundwater Monitoring Wells
- Faster than Flush Joint Casing
- For medium-depth samples/wells (10-50 ft)
- "Running Sands" issue at depths far below groundwater table

Direct-Push Tooling (DPT) Drill Rig

- Minimal ground disturbance (~4" holes)
- Quick and Cost Effective
- Minimal Cuttings Generated, Less Investigation-Derived Waste (IDW)
- Uses Dedicated MacroCore sleeves
- OK for shallow borings (30 ft)
- Beware of Compression Factor
 - Using Static Weight and Force which Results in Soil Compression
 - Soil compressed over 4-5 foot intervals
 - Compression as much as 5X
 - "Running Sands" are a problem
 - Tooling completely removed from ground after each sample

Photoionization Detector (PID)

- Field/Headspace Screening
- PID Calibration
- Different Bulbs for Different Contaminants
 - Consult your Local Rental Company

Some Ionization Potentials (IPs) for Common Chemicals

FIELD SCREENING TOOLS

Application and Reporting

FIELD SCREENING TOOLS

DEXSIL Petroflag Kits

- Test for Total Hydrocarbons in Soil (TPH)
- Real Time Results using Extraction Solvent
- Analyzer Includes Response Factors and Detection Limits for TPH
- Calibration Temperatures are Important!
- Results Above the Upper Limit can be Re-Run with Less Sample Mass
- Potential Low Bias from Water Content
 - Poor Extraction
 - Dilution
 - Sample weight bias

NIN	IG TO	DOL	.S						
Date	Hydro : <u>8/20</u> rator: <u>ka</u>	0Car 0/24 51 Geor	Pet bon Te	St Kit - Calibration T	Fie Time/ Time/	G Id I Date: eratur	® Data Sh : <u>1040</u> re: <u>30,9</u>	eet ∕ <u>8þol94</u> °℃	
LUCA	11011. <u>(1) o</u> f	te ice			pri	DE2	A atual (nnm)	Comments	
No.	Sample ID	Weight	Time/Date	Reading (ppm)	DF	KF-	Actual (ppm)	Comments	
1	BL	109	1050 8/20/20	0		-			
2	CSD	109-	1050 8/20/24	1000				0 04 1263	
3	1 - Bottom - Writ	103	1103 8/20/24	1175				Wetter	
4	3- Botton-Wast	103-	1159 812194	154				AN: 404	
5	4- Bottom-Wa	102	1200 812024	576				Recheck -	
6	5- Batter wist	103	1225 8120124	acci journage.				AN! Some	
7	6-Botton Uni	100	237 8130134	Seece overang +				-	
8	7-58-7 bottom	108	1205 Shin	733				AN1633	
9	8-Bettim-wet	108	1303 018/24	221				AN: 508	
	1- Sold Anto	102	177081202-	33					
10	1 Storen Elli		1241 01010	9569				AN: YEFF	
10 11	10-1-100- Sh	103	1344 8120/24	EEFF, ourage				AN: YEFE	

Representative Sampling

- Site Specific Data Quality Objectives
 - Discuss with Project Manager

Considerations

- Non-homogeneity of Soil
 - Contaminants tend to reside in finest fraction of soil particles (silt, clay, organic acids)
- Grab versus Composite Samples
 - Grab samples: single volume of soil homogenized and submitted for analysis
 - Composite samples: multiple volumes of soil (aliquots) homogenized and submitted for analysis
 - Volatile Organic Compound Samples Never Composited!
- Incremental Sampling
- Cross Contamination Issues
- Decontamination Procedures

Tighe&Bond

KG0

Judgmental Sampling

- Informed by the nature of the site, contaminant properties, and observations
- Focused sampling from an obvious release or the mostly likely release mechanism
- Known Conditions vs. Uncertainty
- Has soil been previously disturbed in the past (e.g. construction activities, filled)
- Is there existing information that suggests where the location of highest contaminant concentrations are likely?
- Do contaminant physical properties allow observation of impacted media (odors, staining, field screening)

Systematic Sampling

- Used when Contaminant Distribution is Unknown (PCBs, metals, PFAS)
 - No odors, staining, point source
- Set up Grid Cells (Letter, Number)
 - Helpful to reduce uncertainty about nature, extent, and distribution of contamination at a site
 - Number of samples depends on variability of initial data (standard deviation)
 - Source Unknown
 - Soil has been Disturbed
 - Lower potential for "missed" areas with high contaminant concentrations
- Can include composite sampling or grab sampling, or a combination of both

Incremental Sampling Methodology (ISM)

- Type of Systematic Sampling
- Structured Composite Sampling Process
- Samples representative of soil throughout a prescribed area/depth called a Decision Unit

- Can have multiple samples (Sampling Units) within a Decision Unit
- Soil non-Homogeneity addressed through "Sub-Sampling" (samples of composite sample)
- Compared to traditional systematic sampling approaches
- ISM yields an accurate estimate of the true mean soil concentration for a given area
- ISM manages micro-scale soil heterogeneity and minimizes potential bias errors

Incremental Sampling Methodology (ISM)

- Site is segregated into areas, each called a decision unit (DU)
- Increments (aliquots) collected evenly throughout DU (30 to 100 increments)
 - Can include Sample Units (SU) for varying depths within a DU
- Increments are composited into single composite sample (1 per DU/SU)
- Composite sample is then Sub-Sampled (samples of composite sample)
 - Initial sample is sieved, "slab cake" prepared from finest portions of sample
 - Slab cake is re-sampled as "meta" composite sample
- Final "meta" composite sample is analyzed for contaminants
- Laboratory typically performs ISM processing and analysis
 - Bulk sample volume is a drawback (5-gallon bucket)
 - Can reduce sample bulk by Sub-Sampling in field and discarding initial composite sample

Incremental Sampling Methodology (ISM)

Two-Dimensional Slab Cake

- Targets finest soil fraction for analysis
- Sieved composite sample spread in even thickness
- Divided into increments and "sub-sampled"
- Sub-samples are re-composited into "meta" composite sample
- "Meta" composite sample analyzed

(Mark Bruce, Eurofins, 2019) ITRC

LESSONS LEARNED

Non-Homogeneity of Soil is a Challenge

- Hoosac River Assessment
 - Mercury above the industrial hygiene level, reanalysis (from the same jar) showed much lower levels
- Emergency Response Situation in CT
 - Leachable lead concentration issues when analyzed via SPLP and reanalyzed showed different concentrations (some hazardous waste levels, some not)
- Field Screening Should Reflect Analytical Results
 - Sample loses "freshness" during screening
 - Should collect Duplicate Samples for field screening vs. lab analysis
 - Collect one for screening
 - One for lab analysis

Understand CSM, DQOs, Project Objectives before Sample Collection

- Soil sampling can be iterative
- Incorporate data quality issues, access issues, non-homogeneity into subsequent boring/sampling rounds

