

CT DPH Drinking Water Action Levels for six PFAS, set July 2023

Cheryl Fields, Toxicologist

Xun Che, Toxicologist

Northeast Conference on the Science of PFAS

April 2, 2024

AGENDA

- Overview CT DPH PFAS Drinking Water Action Levels
- What are CI-PFESAs and why should we care?
- Approach and Key Decision Points in Derivations
- Comparison with Other States
- Questions

Overview of CT DPH Drinking Water Action Levels

For Six PFAS

CT DPH Drinking Water PFAS Action Levels

Col	Connecticut DPH Drinking Water Action Levels for 10 PFAS									
	6:2	8:2				HFPO-DA				
	CI-PFESA	Cl-PFESA	PFOS	PFNA	PFOA	(GenX)	PFHxS	PFHxA	PFBS	PFBA
Action Levels (ng/L):	2	5	10	12	16	19	49	240	760	1800

Action Levels in CT: non-regulatory guidelines for drinking water that are protective of public health and also feasible based upon analytical detection and treatment technology.

CT DPH Drinking Water PFAS Action Levels

Connecticut DPH Drinking Water Action Levels for 10 PFAS										
	6:2	8:2				HFPO-DA				
	CI-PFESA	Cl-PFESA	PFOS	PFNA	PFOA	(GenX)	PFHxS	PFHxA	PFBS	PFBA
Action Levels (ng/L):	2	5	10	12	16	19	49	240	760	1800

June 2022: PFOS, PFOA, PFNA, PFHxS

Action Levels: non-regulatory guidelines for drinking water that are protective of public health and also feasible based upon analytical detection and treatment technology.

CT DPH Drinking Water PFAS Action Levels

Connecticut DPH Drinking Water Action Levels for 10 PFAS

	6:2	8:2	DEOS	DENIA	DEOA	HFPO-DA	DELLVC	DELLyA	DEDC	DEDA
	CI-PFE3A	CI-PFESA	PFU3	PFINA	PFUA	(Genx)	PFEXS	РГПХА	PFD3	PFDA
Action Levels (ng/L):	2	5	10	12	16	19	49	240	760	1800

June 2022: PFOS, PFNA, PFOA, PFHxS

June 2023: PFHxA, PFBS, PFBA, HFPO-DA, and 6:2 - and 8:2 Cl-PFESA

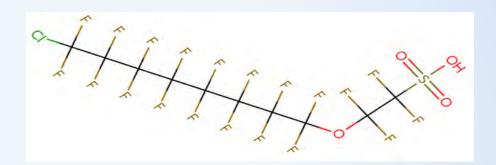
Action Levels: non-regulatory guidelines for drinking water that are protective of public health and also feasible based upon analytical detection and treatment technology.

Uses, Sources and Environmental Occurrence

PFAS	Usage and sources	Environmental occurrence in CT
PFBS	Replacement for PFOS; found in consumer products, flame retardant etc.	soil, groundwater, surface water
PFBA	Photographic film; by products of stain-resistant fabrics, food packaging, carpets	soil, groundwater, surface water
PFHxA	Degradation product of surfactants; also found in AFFF	soil, groundwater, surface water
GenX	PFOA replacement; by-product of fluoromonomer production	soil
6:2 CI-PFESA	Trade name "F-53B", a replacement for PFOS used a mist suppressant in electroplating industry in China	drinking water
8:2 CI-PFESA	Impurity of "F-53B" product	drinking water

What are CI-PFESAs?

Why should we be concerned?



CI-PFESAs: Naming Conventions

Naming convention adopted by DPH	6:2 chloropolyfluoroether sulfonic acid (6:2 Cl-PFESA)	8:2 chloropolyfluoroether sulfonic acid (8:2 CI-PFESA)
CASRN	56426-58-1	763051-92-9
Commercial name	F-53B "major"	F-53B "minor"
EPA Methods 533, 537.1	9-Chlorohexadecafluoro-3-oxanonane- 1-sulfonic acid (9CL-PF3ONS)	11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CL-PF3OUdS)
Synonyms	6:2 CI-PFAES; C8 CI-PFESA; chlorinated polyfluoroalkyl ether sulfonic acid	8:2 Cl-PFAES; C10 Cl-PFESA chlorinated polyfluoroalkyl ether sulfonic acid
NYSDOH (Brase et al 2021)	6:2 chlorinated polyfluoroethersulfonic acid (6:2 CI-PFESA)	chlorinated polyfluoroethersulfonic acid (8:2 CI-PFESA)

CI-PFESAs: Overview

- No federal or state toxicity values
- Detected sporadically in CT private wells and in some instances, as the sole PFAS identified in drinking water
- Structurally similar to PFOS, 6:2 Cl-PFESA is environmentally persistent, a has higher bioaccumulative potential than PFOS
- Available toxicity data indicates toxicity is similar or more potent than PFOS

CI-PFESA time-line

- 1970: first synthesized; used in China for decades
- 2013: first report of environmental occurrence, China
- 2018: detected in rivers & lakes globally, including U.S.

CI-PFESAs: Human Exposure

- Detected in human blood, cord blood, placenta and breast milk
- Placenta transfer rates:

8:2 CI-PFESA (0.62) > 6:2 CI-PFESA (0.44) > PFOS (0.43)

- Crosses blood-brain barrier
- Longest human half-life (15.3 years) of any PFAS

- China: 3rd most frequently detected PFAS in serum
- U.S.: detected in serum only infrequently

NHANES (2017-18)	6-2 CI-PFESA Serum Levels (μg/L)					
Demographic	50 th	75 th	90 th	95 th		
Total population	<lod< td=""><td><lod< td=""><td><lod< td=""><td>0.1</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>0.1</td></lod<></td></lod<>	<lod< td=""><td>0.1</td></lod<>	0.1		
Non-Hispanic Black	<lod< td=""><td><lod< td=""><td>0.1</td><td>0.1</td></lod<></td></lod<>	<lod< td=""><td>0.1</td><td>0.1</td></lod<>	0.1	0.1		
Non-Hispanic Asian	<lod< td=""><td>0.2</td><td>1.3</td><td>2.5</td></lod<>	0.2	1.3	2.5		

CI-PFESAs: Toxicity Data

Mammalian data (6:2 Cl-PFESA)

- Acute single dose studies: neurotoxicity in rats (Zhang 2016)
- Five subchronic (28-d to 10 wk) repeated dose oral toxicity studies
 - Liver: toxicity in two mice strains (Zhang 2018, Pan 2021) and in tigers (Wang 2020)
 - Thyroid: lower T3 and T4, but no effect on TSH in rats (Hong 2020)
 - GI: gut barrier dysfunction & colonic inflammation in mice (Pan 2019)
 - **Reproduction**: ↓ testis & epididymis WT, but no effects on fertility in mice (Zhou 2018)
- Toxicokinetic study: half-life 4.1 d in male rats (Yi 2022), no TK info in mice
- Database limitations: No studies of chronic toxicity/carcinogenicity or neurotoxicity, no 2gen study

CI-PFESAs Toxicity Data (continued)

Non-mammalian data (6:2 Cl-PFESA):

- 2-generation repro/developmental study (180-d) in zebrafish (Shi 2018):
 - ↑ serum testosterone, ↓egg production. In F0 adult males: ↑ serum estradiol & vitellogenin, disrupted spermatogenesis. In F1: maternal transfer of F-53B adversely affected growth & reproduction; F1 & F2: ↑ malformations and ↓ survival
- Developmental toxicity:
 - Zebrafish (Shi 2017): delayed hatching, \uparrow malformations, \downarrow survival, disrupted cardiac development and \downarrow heartrate
 - Chickens (Briels 2018): ↓ heartrate before hatching, but no effects chick survival, hatching, or body mass
- Liver toxicity: 4 studies: in larvae (7d) and adult (21-d, 28-d, 56-d) zebrafish
 - Duration and dose-related cytoplasmic vacuolation (Shi 2019, Wang 2022, Wu 2019, Yi 2019)
 - Aberrant hepatic lipid metabolism, hepatotoxicity via PPAR-γ (Wang 2022)

In vitro data:

- 6:2 Cl disturbed lipid homeostasis in Human HepG2 cells via enhancement of lipid accumulation and fatty acid β-oxidation (Li 2023). Cytotoxic to human liver HL-7702 cells (Sheng 2018)
- both CI-PFESAs bind to and activate all 3 PPARs and promote adipogenesis (Li 2018)
- thyroid hormone receptor binding affinity: 6:2 Cl > PFOS > 8:2 Cl-PFESA; all interact with transthyretin (Xin 2018)

CI-PFESAs: Human Epi data

In humans, 6:2 Cl-PFESA-related effects are similar or more serious than PFOS

- Development: lower birth WT and preterm birth (Chu 2020)
- Endocrine effects:
 - Newborn thyroid homeostasis 70% greater potency than PFOS for FT3 (Liu et al 2023)
 - 29% ↑ odds of PCOS similar to PFOS (Zhan et al 2023) (EPA: Radke et al 2023)
 - Estradiol levels (ref 40)
- Lipids:
 - Tot Chol, Trig, LDL-C and HDL-C, and dyslipidemia (Mi 2022) (Liu 2022)
 - In diabetics: 个Tot Chol and LDL, but no effect on Trig of HbA1c (Han 2021)
 - Metabolic syndrome (Yu 2021)
 - 6:2 Cl ↑ Tot Chol and LDL-C, 8:2 ↓ HDL-C (Cong 2021, China C-8 Project)
- Liver cancer (Cao 2022)

6:2 Cl-PFESAs: Selection of Critical Study

Liver toxicity in (56-d to 10 wk) repeated dose oral toxicity studies

Study	Duration (species)	Dose (mg/kg-d)	Animal POD (mg/kg-d)	Target Organ; Description
Zhang* (2018)	56-d gavage (male Balb/c mice)	0, 0.04, 0.2,	NOAEL: 0.2 LOAEL: 1.0	dose-related ↑ absolute liver WT of 10, 30 and 260% across all doses. ↑ relative liver WT at 0.2 and 1 mg/kg-d (~ 30 and 250%); hepatocellular necrosis, steatosis and ballooning at 1 mg/kg ↑ serum ALT and ALP, ↑ Trig and LDL, ↓ Tot Chol and HDL ↑ liver fatty acids (Tot Chol and Trig)
Pan** (2021)	10-wk water (female C57BI/6 mice)	0, 1, 3, 10 (μg/L)	LOAEL (10 ug/L) for sig. 个 AST, ALT	Liver damage & disorders in lipid metabolism via PPAR-γ (hepatic cytoplasmic vacuolation and hepatomegaly, ↑ a. acids ↓acyl-carnitine (fatty acid transport, metabolic disease). ↑ ALT and AST, ↑ liver: Tot Chol and Trig

*Zhang (2018) selected as Critical Study

**Pan (2021) did not report serum PFAS concentration or estimate a dose per BW

Derivation of 6 PFAS Action Levels

Approaches used and Key Decision Points

Key Decision Points for Toxicity Values

Critical Effects

- Liver effects: GenX, 6:2 Cl-PFESA
- Thyroids effects: PFBS, PFBA [PFHxS]
- Developmental effects: PFHxA [PFOA, PFNA]

Point of Departure

NOAEL, LOAEL, or BMDL

Dosimetric Adjustment

- Ratio of clearance when POD is an administered dose
- Clearance when POD is an internal dose

Uncertainty Factors

- differences between humans and animals
- variability among humans
- use of a LOAEL instead of a NOAEL or BMD for the POD
- use of data from short-term studies to protect against effects from long-term exposure
- deficiencies of the database

$$RfD = POD \times DAF \div UF$$

Key Decision Points for Exposure Assumptions

Water Ingestion Rate (IR)

	Water intake (L/d)	Body weight (kg)	Per-BW water IR (L/kg-d)
Infant	1.106	7.8	0.142
Lactating Women	3.061	73	0.042
Adult (ages 21 to <80)	3.192	80	0.040

- Upper percentile, consumer only intake values (EPA EFH, 2011)
- Central Tendency body weight (EPA EFH, 2011; ATSDR 2021)

Relative Source Contribution

EPA's default minimal value 20%

Action Level =

RfD × RSC ÷ Water Ingestion Rate

Summary Key Decision Points_Tox values

	GenX	PFHxA	PFBS	PFBA	6:2 Cl-PFESA	8:2 CI-PFESA	
Critical Health Effect/ Target organ	LIVER	DEVELOPMENTAL	THYROID	THYROID	LIVER	LIVER	
Dose-Response Approach	BMDL _{10ER}	BMDL _{5RD}	BMDL _{0.5SD}	NOAEL	NOAEL		
POD (administered dose, mg/kg/d) / Animal Serum dose (mg/L)	0.09 (admin)	10.6 (admin)	22.5 (admin)	6 (admin)	0.2 (admin), 18.9 (serum)		
Total Uncertainty Factors	3000	300	100	1000	3000	Based on	
DAF (unitless)/ Clearance Factor (L/kg-d)	0.14 (DAF)	0.0048 (DAF)	0.0027 (DAF)	0.23 (DAF)	0.000029	for 6:2 CI-PFESA	
Vol. of distribution (L/kg)	-	0.73	0.23	0.48	0.23		
Human half-live	-	11.5 days	43.8 days	2.8 days	15.3 years		
Reference Dose (ng/kg-d)	4	170	540	1300	0.2	0.2	

Critical Effect /target organ

Relative Source Contribution

Water Ingestion Rate (L/kg-d)

ACTION LEVEL (ng/L, ppt)

Sensitive Receptor

RfD (ng/kg-d)

8:2 CI-PFESA

(surrogate)

0.2

(surrogate)

20%

0.040

Adult

<1; use MRL of

5

6:2 CI-PFESA

Liver

0.2

20%

0.040

Adult

<1; use MRL of

Summary Ke	y Decision	Points_	Exposure	Assumptions	,
------------	------------	---------	----------	-------------	---

PFBS

Thyroid

540

20%

0.142

Infant, 0-1 yrs

760

PFBA

Thyroid

1300

20%

0.142

Infant, 0-1 yrs

1800

onnecticut Department of Public Health	Summary	Key	Decision	Points_	Exposure	Assum	ptions	AGA . PUBLIC.
---	---------	-----	----------	---------	----------	-------	--------	---------------

DPH	Summary Key	Decision Points	s_Exposure	Assumptions
Connecticut Department				

PFHxA

Developmental

170

20%

0.142

Infant, 0-1 yrs

240

GenX

Liver

4

20%

0.042

Lactating

woman

19

DPH Commedican Indian	Summary	Key	Decision	Points_	_Exposure	Assumptions	PHAB Advanced patricular
Connecticut Department							TEALTH ACCREDITAL

Derivation of Action Levels for GenX, PFHxA, PFBS, PFBA

Approaches used and Key Decision Points

Hexafluoropropylene Oxide-Dimer Acid (HFPO-DA, GenX)

Point of Departure (POD)

BMDL_{10ER}= 0.09 mg/kg/d, based on liver effects in female mice (DuPont 2010, NTP 2019 reanalysis) –administered dose

Dosimetric Adjustment Factor (DAF)

 $(BW_{adult\ human}/BW_{female\ mouse})^{3/4}/(BW_{adult\ human}/BW_{female\ mouse}) = (80kg/0.0349kg)^{-1/4} = 0.14$

Uncertainly Factors

Total Uncertainty Factor	3000
Database Uncertainty	10
Shorter exposure duration	10
Use of LOAEL	1
Human-to-Human Variation	10
Rodent vs. Human Sensitivity	3

Action Level =
$$4.0 \times 10^{-6}$$
 mg/kg-d $\times 0.2 \div 0.042$ L/kg-d $\times 1000000$ ng/mg = 19 ng/L RfD RSC IR unit conversion factor

Perfluorohexanoic Acid (PFHxA)

Point of Departure (POD)

 $BMDL_{5RD}$ = 10.6 mg/kg/d, based on decreased body weight in rat pups (Loveless *et al.* 2009) –administered dose

Dosimetric Adjustment Factor (DAF)

clearance_{human} \div clearance_{animal} = 0.00184 L/kg-h \div 0.383 L/kg-h = 0.0048

Uncertainly Factors

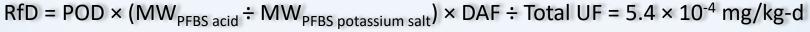
Total Uncertainty Factor	300
Database Uncertainty	10
Shorter exposure duration	1
Use of LOAEL	1
Human-to-Human Variation	10
Rodent vs. Human Sensitivity	3

RfD = POD × DAF \div Total UF = 1.7 × 10⁻⁴ mg/kg-d

Action Level = 1.7×10^{-4} mg/kg-d × $0.2 \div 0.142$ L/kg-d × 1000000 ng/mg = 239ng/L \rightarrow **240 ng/L** RfD RSC IR unit conversion factor

Perfluorobutane Sulfate (PFBS)

Point of Departure (POD)


BMDL_{0.5SD}= 22.5 mg/kg/d, based on decreased serum total thyroxine (T4) in mice pups (Feng *et al.* 2017) –administered dose

Dosimetric Adjustment Factor (DAF)

clearance_{human} \div clearance_{animal} = (ln2 * human V_d \div human t_{1/2}) \div clearance_{animal} = 0.693 * 0.23 L/kg \div 1051.2 h \div 0.056 L/kg-h = 0.0027

Uncertainly Factors

Total Uncertainty Factor	100
Database Uncertainty	3
Shorter exposure duration	1
Use of LOAEL	1
Human-to-Human Variation	10
Rodent vs. Human Sensitivity	3

Action Level = 5.4×10^{-4} mg/kg-d × $0.2 \div 0.142$ L/kg-d × 10000000 ng/mg = 761 ng/L \rightarrow **760** ng/L RfD RSC IR unit conversion factor

Perfluorobutanoic Acid (PFBA)

Point of Departure (POD)

NOAEL = 6 mg/kg/d, based on decreased serum total thyroxine (T4) in male rats (Butenhoff *et al.* 2012) – administered dose

clearance_{human} \div clearance_{animal} = (ln2 * human V_d \div human t_{1/2}) \div clearance_{animal} = 0.693 * 0.4845 L/kg \div 67.9 h \div 0.02161 L/kg-h = 0.23

Uncertainly Factors

Total Uncertainty Factor	1000
Database Uncertainty	3
Shorter exposure duration	10
Use of LOAEL	1
Human-to-Human Variation	10
Rodent vs. Human Sensitivity	3

Action Level = 1.3×10^{-3} mg/kg-d × $0.2 \div 0.142$ L/kg-d × 10000000 ng/mg =1831ng/L \rightarrow **1800 ng/L** RfD RSC IR unit conversion factor

6:2 chloropolyfluoroether sulfonic acid (6:2 Cl-PFESA)

Point of Departure (POD)

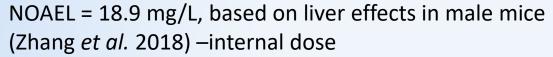
 $V_d \times (\ln 2/t_{1/2}) = 0.23 \text{ L/kg} \times (0.693/5585 \text{ d}) = 0.0000285 \text{ L/kg} - 0.000029$

Uncertainly Factors

Total Uncertainty Factor	3000
Database Uncertainty	10
Shorter exposure duration	10
Use of LOAEL (n/a)	1
Human-to-Human Variation	10
Rodent vs. Human Sensitivity	3

RfD = POD × (MW_{6:2 Cl-PFESA acid} ÷ MW_{6:2 Cl-PFESA ammonium salt}) × DAF ÷ Total UF =
$$1.7 \times 10^{-7}$$
 mg/kg-d

Action Level = 1.7×10^{-7} mg/kg-d × $0.2 \div 0.04$ L/kg-d × 1000000 ng/mg = 0.85 ng/L \rightarrow 2 ng/L


RfD RSC IR unit conversion factor MRL

8:2 chloropolyfluoroether sulfonic acid (8:2 Cl-PFESA)

Point of Departure (POD)

 $V_d \times (\ln 2/t_{1/2}) = 0.23 \text{ L/kg} \times (0.693/5585 \text{ d}) = 0.0000285 \text{ L/kg} - 0.000029$

Uncertainly Factors

Total Uncertainty Factor	3000
Database Uncertainty	10
Shorter exposure duration	10
Use of LOAEL	1
Human-to-Human Variation	10
Rodent vs. Human Sensitivity	3

RfD = POD × (MW_{6:2 Cl-PFESA acid} ÷ MW_{6:2 Cl-PFESA ammonium salt}) × DAF ÷ Total UF =
$$1.7 \times 10^{-7}$$
 mg/kg-d

Action Level =
$$1.7 \times 10^{-7}$$
 mg/kg-d × $0.2 \div 0.04$ L/kg-d × 10000000 ng/mg = 0.85 ng/L \rightarrow 5 ng/L RfD RSC IR unit conversion factor MRL

Comparison with EPA and other states

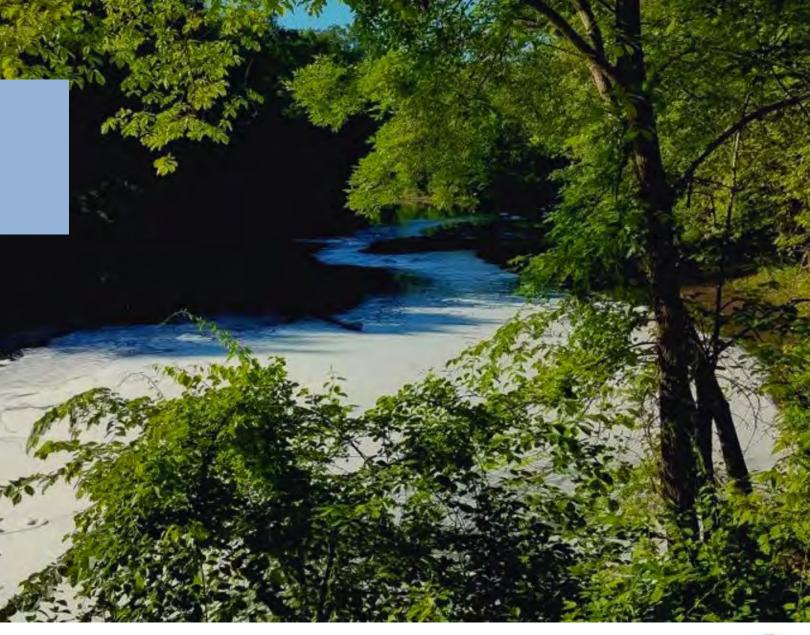
Drinking water guidance and regulatory values

Comparison with EPA and Other States

	EPA (2022)	NY (2022)	NJ (2023)	CT (2022)	NH	MA	VT	MI (2019)	MN (2018- 2021)	CA (2021)	OH (2022)
PFBS	2,000	∑ ₁₃ 100 ^a	-	760	-	-	-	420	100	500	2100
PFBA	-	$\sum_{13} 100^a$	-	1,800	-	-	-	-	7,000	-	-
PFHxA	-	∑ ₁₃ 100 ^a	-	240	-	-	-	400,000	200	-	-
GenX	10	∑ ₆ 30 ^a	20	19	-	-	-	370	-	-	21
6:2 Cl- PFESA	-	∑ ₆ 30ª	2 ^b	2 ^c	-	-	-	-	-	-	-
8:2 Cl- PFESA	-	∑ ₆ 30ª	2 ^b	5 ^{c,d}	-	-	-	-	-	-	-

All values are in units of ppt (ng/L); values in grey cells are Notification Levels; values in bold are regulatory levels.

- a. NY sum of 6: PFHpS, PFUnA, PFDoA, GenX, 6:2 Cl; 8:2 Cl; sum of 13: PFBA, PFBS, PFPeA, PFPeS, PFHxA; ADONA, 4:2 FTS, 6:2 FTS, 8:2 FTS, NFDHA, PFEESA, PFMPA, PFMBA
- b. NJ DEP guidance is for a group of related chlorinated perfluoroether carboxylates (CI-PFPECAs)
- c. CT DPH AL based on EPA's Method 533 Detection Limit (MDL) used for UCMR5 for 6:2 Cl-PFESA (aka 9Cl-PF3ONS)
- d. CT DPH AL derived using surrogate RfD for 6:2 CL-PFESA and set at EPA Method 533 MDL used for UCMR5 for 11Cl-PF3OUdS)


QUESTIONS?

Thank You!

For questions or additional information:

Cheryl.Fields@ct.gov

Xun.Che@ct.gov

