
Background PFAS Concentrations in Soil – An Overview with a Focus on the Northeast

NEWMOA Webinar December 5, 2024

Authors: Amy B Rosenstein,¹ Grace I Greenberg,¹ Guilherme R Lotufo,² David W Moore,² Michael J Narcisi¹

(1) US Army Corps of Engineers, New England District, Concord,MA; (2) US Army Corps of Engineers, Engineer Research andDevelopment Center-Environmental Laboratory, Vicksburg, MS

These slides represent the views of the authors and do not necessarily reflect the views of DoD/Army/USACE.

NE REGION PFAS SOIL BACKGROUND DATA

This presentation provides an overview of available PFAS soil background data for the Northeast region of the United States and compares the data to current regulatory levels.

Objectives:

- To summarize available PFAS soil background data from NE region states.
- To evaluate the extent to which states have incorporated available soil background data sets into regulatory programs.
- To discuss the limitations of these data.

My goals:

- Risk assessor for the US Army Corps of Engineers New England as part of project teams doing site investigation and remediation.
- Important to have background data to ensure we are focusing on the DoD sources of the most concern.
- Not speaking on behalf of the states, just compiled available data.

Soil:

- All NE Region states and New York have some soil background data.
- One state has formally incorporated a background data set into its regulatory program, while others just provide guidelines.

Sediment:

- Limited background data available (see ITRC).
- NE Region states do not have specific regulatory guidance regarding sediment background.

Some states also have data available for background in:

- Surface water
- Groundwater
- Drinking water
- Fish/shellfish tissue

POLL QUESTION

Have you used PFAS soil background data in any site clean-up decisions?

Yes, quantitatively
Yes, qualitatively
No

MAINE 2022 SOIL BACKGROUND STUDY

Maine shallow soils study conducted by Sanborn, Head & Associates, April 2022, and posted by the Maine DEP, July 2022:

- Sample Locations:
 - o 31 urban and 32 non-urban locations in 16 counties in Maine.
 - Away from suspected sources.
- Soil Depth: Shallow soil, 0-6"
- **PFAS Compounds Analyzed:** 28
- Analytical Method: Method 537.1

ME 2022 SOIL BACKGROUND STUDY RESULTS (CONTINUED)

Summary of Results:

- Recommended BTV and UCLM values for **9 PFAS**, after removing outliers.
- Measured 19 other PFAS but did not recommend background values (detected in <10% of samples or in fewer than 4 samples).
- PFOS most frequently detected (in 81% of samples) followed by PFCAs.
- Urban and non-urban data were different for PFOS and PFDA; therefore, background calculated separately for urban and non-urban datasets.

Study Limitations:

- One sample from each location.
- Reliance on urban/rural designations based on information developed by others.
- Results not normalized for physical parameters (i.e., percent organic matter, total organic carbon, grain size, total solids, pH) that may impact PFAS concentrations.
- Did not consider location-specific environmental conditions (weather, topography, hydrogeologic settings) that can impact atmospheric deposition or habitat (different land cover and surrounding development, topography and vegetation) that could impact PFAS concentrations.

ME BACKGROUND VS. STATE REGULATORY LEVELS

Maine DEP 2023 Guidelines:

- Remediation to established background concentrations only if background is higher than the applicable Remedial Action Guideline (RAG).
- Incorporated BTVs for 5 PFAS from this study into regulations; can be used in the absence of better, representative site-specific background data:
 - BTVs to be used when comparing individual, discrete samples.
 - UCLs to be used when comparing to samples that represent a mean or average conc in soil in a specific area (such as incremental samples).
- Given that the BTVs are orders of magnitude lower than the RAGs protective of human health, in general:
 - Comparison to background will not help eliminate PFAS as COPCs.
 - Cleanup standards will not likely be set to background concentrations.

				Maine Soil RAGs (ng/g)						
PFAS	Soil BTV (ng/g)	Soil UCLM (ng/g)	Protection of Groundwater	Residential	Commercial Worker	Park User	Recreator Sediment	Constructi on Worker		
PFBA	0.43	0.14	360	110,000	1,600,000	300,000	350,000	2,000,000		
PFHxA	1.5	0.22	130	43,000	560,000	120,000	140,000	130,000		
PFOA	2.2	0.39	17	260	3,400	740	850	770		
PFNA	1.9	0.15	4.6	260	3,400	740	850	770		
PFOS - urban	3.0	1.2								
PFOS - non-	0.55	0.28	1	170	2 200	400	570	F10		
urban	0.55	0.28	1	170	2,200	490	570	510		

NEW HAMPSHIRE 2021 SOIL BACKGROUND STUDY

USGS New England Water Science Center in cooperation with NHDES:

- Sample Locations:
 - Lands classified as forested, shrubland, herbaceous, barren, or wetlands, excluding locations within 500-meters of known or potential PFAS contamination or releases.
 - State gridded into 100 equal-area grid cells; sites were randomly generated within the grid cells; one sample taken from each grid cell.
- **Soil Depth:** All locations, shallow soil, 0-6"; 50 locations, 6-12"; 6 locations, profiles in 6" increments down to 36".
- **PFAS Compounds Analyzed:** 36
- **Analytical Methods:** Liquid chromatography tandem mass spectrometry (LC-MS/MS) and isotope dilution quantitation.

NH SOIL BACKGROUND STUDY RESULTS (CONTINUED)

Summary of Results - All Soil Depths:

- 28 PFAS compounds detected.
- 15 PFAS detected in greater than 20% of samples.
- PFAS concentrations typically decrease with depth below land surface.

Study Limitations:

- Did not exclude outliers.
- Samples included locations in areas of air deposition from local PFOA air emissions sources, which may have skewed the PFOA BTV high.

NHDES: Proposed Background Threshold Screening Values

		BTV PFOS	BTV PFOA	BTV PFHxS	BTV PFNA
Data Subset		(ng/g)	(ng/g)	(ng/g)	(ng/g)
Full State 0-6" (100 samples)	-	3	3	0.1	1
Full State 6-12" (50 samples)	-	2	3	-	1
Pagion onlit	Southern 6	4	4	-	-
Region split	Northern 4	3	2	-	-

Table Note: BTVs shown represent 95% UTLs with 95% coverage calculated by NHDES using ProUCL 5.1/5.2.

NH BACKGROUND VS. STATE REGULATORY LEVELS

	Proposed SRS (ng/g)	Direct Contact (ng/g)			Leaching (ng/g)	aching Quantitation	Full State 0-6" Proposed Background (BTV) (ng/g)
	S-1/S-2/S-3	S-1	S-2	S-3	S-1/S-2/S-3	S-1/S-2/S-3	S-1/S-2/S-3
PFOA	0.4	200	1400	1400	0.1	0.4	3
PFNA	<mark>1.3</mark>	100	1000	1000	0.4	1.3	1
PFHxS	<mark>0.4</mark>	100	900	900	0.2	0.4	0.1
PFOS	0.5	100	700	700	0.5	0.2	3

Table Notes: SRS=soil remediation standards; EQL=estimated quantitation limit; BTV=background threshold value

- For human health risk assessment, the NHDES proposed BTVs are orders of magnitude lower than the proposed SRS values for Direct Contact, thus:
 - Comparison to background will not help eliminate PFAS based on human health.
- Applying the NHDES Proposed SRS values:
 - 2 of the 4 proposed SRS values are less than background, so applying these background values may help differentiate site from background in site investigations.
 - Proposed revisions to Env-Or 600 also state: The soil standards in Table 600-2 shall not apply to soil contamination that has been demonstrated to be attributed to background as defined in Env-Or 602.

VERMONT SOIL BACKGROUND STUDIES

Zhu et al. 2019 and 2022; and Schroeder et al. 2021:

• Zhu et al. 2019 and 2022:

- Study conducted by University of Vermont and Sanborn Head with partial funding and support by VTDEC.
- Soil samples collected June August 2018 to determine the background concentrations of PFAS in VT shallow soils.
- Schroeder et al. 2021:
 - Study of PFAS soil and groundwater contamination related to industrial airborne emissions and land deposition in Bennington VT area associated with Hoosick Falls, NY air emissions.
 - Area impacted by Norlite (lightweight aggregate plant that incinerated received PFAS materials).

VT SOIL BACKGROUND STUDY - ZHU ET AL. 2019 AND 2022

Sample Locations:

- Same 66 locations as a previous VTDEC background study for PAHs, arsenic, and lead.
- Properties selected by overlaying a 100-square mile grid across the state, identifying the largest municipality in each grid, and sampling therein at state or municipal parks, forests, greens, or building or school lawns.
- Number and Soil Depth: 68 surface soil samples, 0-6"
- **PFAS Compounds Analyzed:** 17 perfluoroalkyl acids (PFAA)
- Analytical Method: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) with internal standardization quantitation

Summary of Results:

- Total PFAA concentrations ranged from 0.54 to 36 ng/g dry soil weight.
- PFOS most common, followed by PFNA and PFOA, with seven other PFAA identified at more than 50% of the locations.
- Higher total PFAA levels in northern Vermont.
- BTVs were not calculated for PFAS with detection frequencies less than 10%.

Study Limitations:

- One sample collected at each location (two locations had duplicates).
- One location determined to be an outlier and removed from the data set.

VT SOIL BACKGROUND VS. STATE REGULATORY LEVELS

VT DEC Current Regulations:

- VT Rule: "Investigation and Remediation of Contaminated Properties Rule July 6, 2019", Appendix B.
- Current preferred approach is to use site-specific background data.
- These soil background studies may be used to attempt to discern background from a new release, as allowed by the Rule, but are not formally incorporated into the Rule.

•	Given that the BTVs are orders
	of magnitude lower than the
	RAGs protective of human
	health, in general:

- Comparison to background will not help eliminate PFAS as COPCs.
- Cleanup standards will not likely be set to background concentrations.

		VT DEC Soil Standards (TR=1E-06,				
		HQ=1.0)				
	Zhu et al. 2019	Residential Soil	Non-Residential Soil			
Analyte	Proposed UTL (ng/g)	(ng/g)	(ng/g)			
PFHpA	0.84					
PFHxS	0.38					
PFNA	0.44	1,220	14,360			
PFOS	3.4					
PFOA	1.6					
Sum of 5						
regulated PFAS						
in background=	6.7					

Table Notes: Used Zhu 2019 study data presented without outliers (Tables 5.2 and 6.2); and the results of the ProUCL 5.1 analysis (Table 7).

VT Regulations for PFAS are for the sum of 5 - PFHpA, PFHxS, PFNA, PFOS and PFOA.

MASSACHUSETTS SOIL BACKGROUND STUDY

Woodard & Curran conducted a PFAS soil background study in 2022:

- **Sample Locations:** Undisturbed soils in MA; 25 open spaces in West, Central, Northeast and Southeast Massachusetts
 - Locations selected with -
 - no suspected historical or current sources onsite or nearby
 - good geographic coverage across the State
 - public accessibility
 - owners allowed access/approval to sample
- Number and Soil Depth: 100 samples, 0-6"
- PFAS Compounds Analyzed: 36
- Analytical Method: Isotope dilution LCMS/MS

MA SOIL BACKGROUND STUDY RESULTS (CONTINUED)

Summary of Results:

- Of the 36 PFAS analytes, nine were detected in one or more samples.
- One or more PFAS analytes were detected in 88% of samples.
- PFAS6 concentrations were > the lowest Mass DEP risk-based standard S-1/GW-1 in 58% of samples.
- Reporting limits for non-detect results exceeded S-1/GW-1 standards in numerous samples for all PFAS6 compounds except for PFOS.

Study Limitations:

- Focused only on surface soil 0-6".
- Soil characteristics may influence the nature and concentration of PFAS collected the following soil characteristics, but did not determine any association between these factors and PFAS concentrations:
 - Qualitative information on soil type and location, and
 - Quantitative data for soil organic carbon content.

MA BACKGROUND VS. STATE REGULATORY LEVELS

MassDEP derives MCP soil standards considering:

- 1. Direct contact exposure routes;
- 2. Leaching potential to underlying groundwater; and
- 3. Feasibility of achievement -- achievable reporting limits and background concentrations, when available.

MCP 40.091(3): The characterization of risk of harm to health, safety, public welfare, and the environment is not required for a disposal site, environmental medium, or chemical for which response actions have successfully reduced concentrations to background levels, as described in 310 CMR 40.1020.

Since the UTLs are orders of magnitude lower than the human risk-based criteria:

- Comparison to background will not help eliminate PFAS as chemicals of potential concern for human health risks.
- However, applying the S-1/GW-1 criteria, based on leaching to groundwater:
 - Applying PFAS background values may help differentiate background in site investigations.

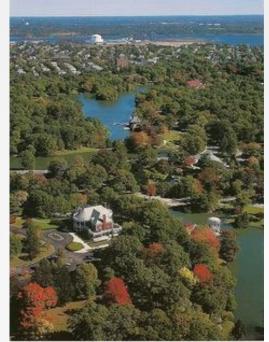

	05%	MCP Criteria						
Analyte	95% Upper Tolerance Limit (W&C MA Background Study) (ng/g)	Direct Contact Exposure S-1 (ng/g)	Direct Contact Exposure S-2 (ng/g)	S-1/GW-1 (ng/g)	S-2/GW-2 (ng/g)			
PFOS	3.1	300	400	2	300			
PFOA	2.0	300	400	0.72	300			
PFNA	0.72	300	400	0.32	300			
PFDA	0.46	300	400	0.3	300			
PFHpA	0.63	300	400	0.5	300			

Table Notes: MA also regulates PFHxS; but in this MA Background study, PFHxS was not detected in any sample.

RHODE ISLAND SOIL BACKGROUND STUDY

RIDEM Statewide PFAS Investigation Report, November 2023

- Sample Locations:
 - 50 locations chosen from within 5 RI counties using available historic aerial imagery to target locations that showed no disturbance since the 1940s.
 - Locations on state lands that overlay GA/GAA aquifers.
 - Selected a representative number of samples from each county based on land area.
- Soil Depth: 0-2 feet
- **PFAS Compounds Analyzed:** 24
- Analytical Method: Isotope dilution via LC/MS/MS for nondrinking water matrices

Rogen Williams Pank - Providence, R. I.

RI SOIL BACKGROUND STUDY RESULTS

Summary of Results:

- Recommended Interim BTVs and UTLs for PFAS6 only.
 - Additional results are available for: PFBA, PFPeA, PFHxA, and PFUnA.
 - No other individual PFAS were detected in more than one sample.
- One outlier removed (contained several PFCAs maximum detections).

Study Limitations:

- Soil depth of 0-2 feet could be a study limitation because highest concentrations from airborne deposition expected to be at the surface.
- No specific identification of potential source areas used aerial imagery to identify landscape changes since the 1940s.

Compound	95%-95% Upper Tolerance Limit (UTL) (ng/g)
PFHpA	0.178
PFOA	0.639
PFNA	0.172
PFDA	0.110
PFHxS	0.087*
PFOS	0.842
	*Maximum Method Detection Limit (MDL) Used

RI BACKGROUND VS. STATE REGULATORY LEVELS

- RI passed legislation June 2022 to add PFAS6 to the definition of a hazardous substance: Industrial Property Remediation and Reuse Act (RIGL 23-19.14-3).
 - Allowed for the adoption of standards of PFAS in environmental media, including soil: Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (250-RICR140-30-1).
- Forthcoming Rules:
 - In 2024, State will promulgate soil standards for PFAS6.
 - Criteria will include *Residential Direct Exposure Criteria, Industrial/Commercial Direct Exposure Criteria, and GA Leachability Criteria* for each of the individual PFAS6.

Draft RIDEM Statewide PFAS Investigation Report, November 2023 states that:

- In instances where the derived leachability criteria for an individual PFAS is below the BTV determined by RIDEM, the leachability criteria will default to the BTV, and
- This is not anticipated to be true for Direct Exposure Criteria, which are orders of magnitude higher than the associated GA Leachability Criteria.

CONNECTICUT SOIL BACKGROUND STUDY

CT Department of Energy and Environmental Protection (CTDEEP) supported a UConn student study in 2022:

- Students collected and analyzed soil data from 16 state forests.
- Students' *Final Design Report* not peer-reviewed outside of UConn
- Data available upon request from CTDEEP.

CT SOIL BACKGROUND STUDY RESULTS

Sample Locations:

- 110 samples taken at 16 locations in Connecticut parks and forests.
- Sites were evaluated for possible PFAS contamination by identifying layers in GIS that indicated potential sources such as fire stations, airports, and sewage treatment plants.
- Considerations for sampling locations included: easily accessible from roads or trails, in a sunny area, and land access approval.
- Soil Depth: 0-6" and 18-24"
- PFAS Compounds Analyzed: 18
- Analytical Method: EPA Method 8327

CT SOIL BACKGROUND STUDY RESULTS (CONTINUED)

Summary of Results:

- Samples collected at 0-6" showed higher concentrations than deeper samples, in general, by an order of magnitude of about 2.
- Samples collected within each property had inconsistent results.
- Range of Concentrations:
 - o 0-6": 0-1.17 ppb
 - 18-24": 0-0.097 ppb

Study Limitations:

- Not peer-reviewed.
- Time constraints; adjusted sampling plan; increased number of soil samples in each sampled area.
- Limited number of samples analyzed by the lab.
- Accessibility: sampling only done on CT DEEP owned property.

CT BACKGROUND VS. STATE REGULATORY LEVELS

CT PFAS Remediation Criteria:

- Do not contain numeric cleanup standards for emerging contaminants including PFAS but do require remediation using the procedures for Additional Polluting Substances (APS).
- APS Criteria for PFAS are available for use upon request using the APS Fast Track Form for certain PFAS.
- Regulations state: Soil must be remediated so that the concentration of a substance in soil is equal to or less than:

(1) The direct exposure criteria (residential or industrial/ commercial, as applicable) and the pollutant mobility criteria; or

(2) The background concentration for soil.

		•	Upon request, not promulgated CT PFAS Remediation Criteria (ng/g)				
Analyte - Shallow Soil	Preliminary 95% UTL with 95% coverage - CT Background Study (ng/g)	Residential Direct Exposure	Industrial/ Commercial Direct Exposure	GA Pollutant Mobility	GB Pollutant Mobility		
Sum of PFOA, PFOS, PFNA, PFHxS, PFHpA	3.8	1,350	41,000	1.4	14		

Table notes: Presenter compiled data and conducted BTV calculations in ProUCL 5.2. These are preliminary calculations using certain assumptions and should not be used in any site investigations.

Potential site investigation impacts:

 Comparison to background unlikely to help eliminate PFAS as COPCs, except for GA Pollutant Mobility.

NEW YORK SOIL BACKGROUND STUDIES

NYSDEC 2021 and SCHROEDER et al. 2019

- NYSDEC, 2021:
 - Sampling of soil possibly impacted by Norlite Corporation (lightweight aggregate plant incinerated PFAS materials received from DoD collection programs).
 - Results showed that soil unlikely impacted by emissions (upwind of kilns was considered background in the study).
- Schroeder et al., 2019:
 - Academic study to evaluate the extent to which airborne PFAS emissions can impact soil and groundwater.
 - Collected samples upgradient and downgradient of known industrial PFAS emission sources, including far field samples from NYSDEC forest land not impacted by air emissions to represent background conditions.

Future NYSDEC background PFAS study:

- NYSDEC conducting a background PFAS study (rural) expected to be finished later in 2024 (as per Jan 2024 correspondence).
- Once completed, Soil Cleanup Objectives in Part 375-6 will be updated.

NYSDEC UPWIND/SCHROEDER VS. NYSDEC GUIDANCE VALUES

PFOA and PFOS guidance values are listed in: *Sampling, Analysis, and Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs (NYSDEC, April* 2023).

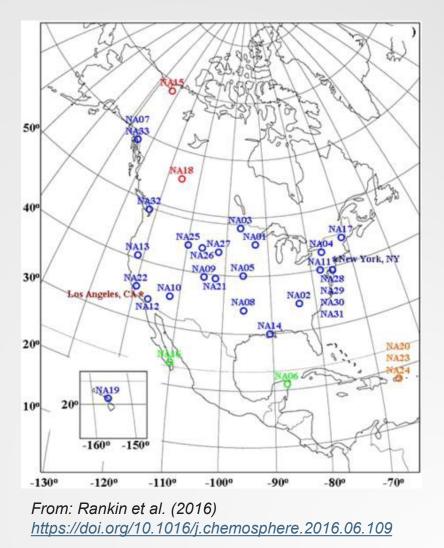
- To be used in determining whether PFOA and PFOS are contaminants of concern for the site and for determining remedial action objectives and cleanup requirements.
- Schroeder average background values are lower than NYSDEC guidance values protective of human health, except for unrestricted use.
- Therefore, using these data for comparison to background may not help eliminate PFAS as COPCs for anticipated site uses, other than unrestricted use.

	Mean Soil Background*	NYSDEC Soil Guidance Values (ng/g)					
	(ng/g)	Protection of Groundwater		Residential	Restricted Residential	Commercial	Industrial
PFOA	1.16	0.8	0.66	6.6	33	500	600
PFOS	0.55	1.0	0.88	8.8	44	440	440

Study Limitations: Prevailing upwind might still be impacted, even if less than prevailing downwind.

POLL QUESTION

Would you like to see standardized soil background data* for every state?


□ Yes □ No

*Meaning published soil background numbers to be used in site investigations.

US PFAS IN SOIL BACKGROUND - OVERVIEW

- Predominant analytes often include PFOS, PFOA, PFNA, and PFDA:
 - PFOS concentrations typically > PFOA
- Rankin et al. (2016) collected and analyzed ~30 samples across the US from sites removed from known contamination sources.
 - <u>Total</u> PFCAs ranged from 0.145-6.080 ng/g (mean = 1.820).
 - <u>Total</u> PFSAs ranged from 0.035 1.990 ng/g (mean = 0.410).
 - Concentrations of <u>individual</u> analytes were typically <1 ng/g.

PFAS IN SOIL BACKGROUND – USACE EFFORTS

Two initiatives underway in USACE research arm (ERDC):

- 1. NATO working group support:
 - Ambient conditions (removed from known point sources) in environmental media (soil, sediment [freshwater and marine], surface water [freshwater and marine], and rainwater).
 - ERDC developed an initial template for data collection from published literature.
 - Canada gathering other member country data.
 - Together with select other member countries, ERDC developing a white paper to cover terminology (e.g., ambient, background, etc.), data collection and synthesis, and findings.
 - Three-year program.
- 2. Dredging Operations and Environmental Research Program (DOER) program:
 - Ambient sediment conditions in selected ports and harbors in the Great Lakes as it relates to federally maintained navigation channels.
 - Working to complete in 2025.

SUMMARY: STATUS OF PFAS IN SOIL BACKGROUND

- Maine: PFAS soil BG data incorporated into PFAS regulations.
- New Hampshire: PFAS Soil BG data available, but not incorporated into regulations yet.
- Vermont: PFAS Soil BG data available (separated into urban + non-urban).
 - Not specifically considered in regulations but can be one line of evidence.
 - Future rural soil background study planned; once completed will be incorporated into regulatory guidance.
- Rhode Island: PFAS Soil BG data available.
 - No soil PFAS regulations.
 - Background will be included in future regulatory updates, but not published yet in 2024.
- Connecticut: PFAS Soil BG data available (non-peer-reviewed) not used in regulations:
 - PFAS in soil regulations available, but only by special request. Regulatory updates in progress.
 - Background considered in regs generically.
 - Possible future PFAS soil BG study may be in the works, but not confirmed.
- New York: PFAS Soil BG data not available and not considered in regulations:
 - Future NYSDEC background PFAS study (rural) planned but not published yet in 2024.

Several Northeast area states have:

- Well-developed PFAS soil background data, and
- One has incorporated PFAS soil background into its regulatory program.

- Several Northeast area states have:
- Plans in place to incorporate existing or new soil PFAS background data sets into regulations.

Other Northeast area states are:

• Still in the process of developing data and/or figuring out how to incorporate PFAS soil background into regulations.

CONTACT AUTHOR: AMY.B.ROSENSTEIN@USACE.ARMY.MIL

- Maine: Maine DEP Memorandum July 19, 2022, with attached "Background Levels of PFAS and PAHs in Maine Shallow Soils, Study Report," prepared by Sanborn, Head & Associates, Inc., April 2022. https://www.maine.gov/dep/spills/topics/pfas/Maine_Background_PFAS_Study_Report.pdf
- Vermont: (1) Zhu, W., Khan, K, Roakes, H, Maker, E, Underwood, KL, Zemba, S, Badireddy, AR, 2022. Vermont-wide assessment of anthropogenic background concentrations of perfluoroalkyl substances in surface soils. Journal of Hazardous Materials, 438, p.129479.and Schroeder et al. 2020; (2) Schroeder, T, Bond, D, Foley, J, 2021. PFAS soil and groundwater contamination via industrial airborne emission and land deposition in SW Vermont and Eastern New York State, USA. Environmental Science: Processes & Impacts, 23(2), pp.291-301.
- New Hampshire: USGS. Per-and polyfluoroalkyl substances (PFAS) in New Hampshire soils and biosolids (No. 208). https://www.sciencebase.gov/catalog/item/61f43d6cd34e622189bbb0c4 provided the raw data. A presentation (undated) entitled: Assessing PFAS Occurrence and Background Concentrations in New Hampshire Soils. Andrea Tokranov, U.S. Geological Survey (https://doi.org/10.5066/P9KG38B5). Full citation: Santangelo, LM, Tokranov, AK, Welch, SM, Schlosser, KEA, Marts, JM, Drouin, AF, Ayotte, JD, Rousseau, AE, Harfmann, JL, 2022, Statewide survey of shallow soil concentrations of per- and polyfluoroalkyl substances (PFAS) and related chemical and physical data across New Hampshire, 2021: U.S. Geological Survey data release, https://doi.org/10.5066/P9KG38B5. Also, presentation from the Federal Remediation Technologies Roundtable meeting November 7, 2023: https://www.ftr.gov/meetings2.cfm#Nov2023. NHDES. R-WMD-23-03 Technical Summary Report. Proposed Soil Remediation Standards (SRS) for Perfluorooctanoic Acid (PFOA), Perfluorooctane Sulfonic Acid (PFOS), Perfluorohexane Sulfonic Acid (PFHxS), and Perfluorononanoic Acid (PFNA). October 6, 2023. Attachment C (Interdepartmental Memorandum to Michael J. Wimsatt, P.G., Director, Waste Management Division from Jeffrey Marts, P.G., NHDES-HWRB Administrator. Re: Recommended Background Threshold Values (BTVs) for Certain Per- and Polyfluoroalkyl Substances (PFAS) in Shallow Soil in New Hampshire, October 6, 2023. NHDES REGULATION REVISION Final Proposal November 2024.

NHDES REGULATION REVISION - Final Proposal November 2024.

Mass: PFAS in Massachusetts Background Soils, White Paper by Woodard & Curran, January 2024. S Olney, L McIntosh, C Rockwell, D Collins, L Campe.

Rhode Island: RIDEM Statewide PFAS Source Investigation Report November 2023. Draft report: https://dem.ri.gov/environmental-protection-bureau/land-revitalization-and-sustainable-materialsmanagement

Conn: UConn Senior Student Project: PFAS Background Concentrations in CT. G Pagano, J Jackson, Gr Roberts, T Molnar. Sponsor: CT DEEP. Raw data received from M Lally, CT PFAS Coordinator.

- New York: (1) NYSDEC, Norlite Environmental Sampling Report, March 2021; (2) Schroeder, T, Bond, D, Foley, J, 2021. PFAS soil and groundwater contamination via industrial airborne emission and land deposition in SW Vermont and Eastern New York State, USA. Environmental Science: Processes & Impacts, 23(2), pp.291-301.
- NYSDEC, 2023. Sampling, Analysis, and Assessment of Per-and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs, April 2023.
- Rankin, K, SA Mabury, TM Jenkins, JW Washington, A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence, Chemosphere, Volume 161, 2016, Pages 333-341, https://doi.org/10.1016/j.chemosphere.2016.06.109