

NEWMOA PFAS Webinar Series PFAS: Thermal Technologies

Thermal Destruction of PFAS During Full-Scale Reactivation of PFAS-Laden Granular Activated Carbon

Rebecca DiStefano

Senior Applications Engineer Industrial Solutions and Diversified Applications

Author Acknowledgements: Tony Feliciano, Richard A. Mimna, Adam M. Redding, John Matthis

Classification : Conference Presentation

Creation date : October 2024

Department responsible for handling information: Industrial Solutions

Disclosure Scope : Meeting participants

Environmental Solutions Division (ESD)

- Largest activated carbon player in the world
- Greater focus on innovation and future outlook
- Diversified manufacturing base geographically and product type

- Stronger R&D capabilities
- Higher performing specialty products
- Focused on growing our business in key markets (automotive)

© Calgon Carbon Corporation 2024

Why Do Experts Choose Experts?

Testing

Implementation

Pilot Testing

Design

R&D, Applications Engineering, and Technical Service

- Provide recommendations on activated carbon and ion exchange products
- Determine project feasibility and scoping
- Design true cradle-tograve water and air treatment solutions
- Establish media exchange schedule and plan for disposal of spent media

Equipment Engineering and Fabrication

- 80,000 sq. ft. Equipment Fabrication and Assembly plant in Pittsburgh, PA
- Capabilities including fabrication, lining, and painting of both standard and customized carbon steel vessels
- Fabrication capacity of 150+ Model 10 vessels
- Over 3200 mobile service systems

Field Services

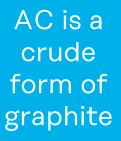
- Field Service Team consisting of~50 representatives across the globe
- Provided on-site services for our customers for more than 40 years
- Fully trained for equipment installation, repair, maintenance, and carbon exchanges
- International Field Service Teams based in active regions

Logistics

- Private fleet of ~120 dedicated trailers, each with different specifications
- Ensures delivery of fresh GAC and IX resin, safe transportation and removal of spent media
- Dedicated skilled drivers work hard to meet customers' needs and requests in a timely and efficient manner

Rapid Response

Treatment System Mobilization


Global Logistics Rapid Response

When clients need services quickly, Calgon Carbon delivers; offering a wide variety of equipment, activated carbon, specialty products, and field personnel for rapid response applications.

Structure of Activated Carbon

AC is 99% graphite

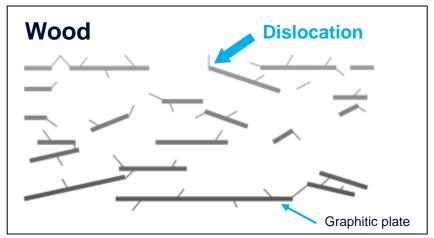
 Carbon is the base element of graphite

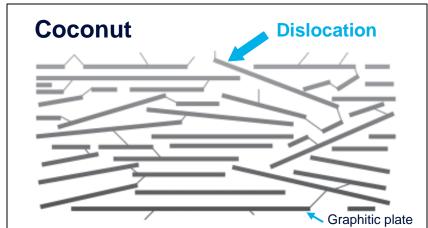
 Imperfections result in porosity and greater surface area

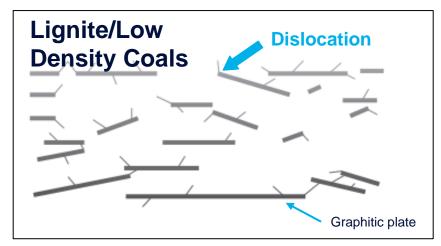
Why are Granular Activated Carbon Products Different?

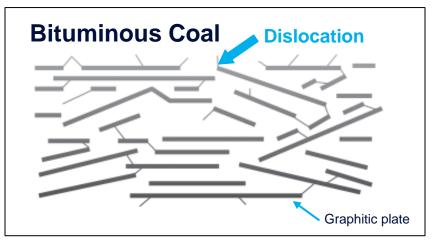
Raw material dictates all of the product possibilities

- Ash impurities inherited
- Density and hardness are linked
- Transport pore structure and adsorption kinetics
- Single unique family of products from a raw material source
- Coconut ≠ Bituminous Coal ≠ Lignite ≠ Wood









Internal Fingerprint of Starting Material

Removing PFAS for over 20 years

Effectively treating to non-detect levels mean < 1 drop in 20 Olympic size pools. This requires engineered and proven solutions, not just products... this is the Calgon Carbon Difference.

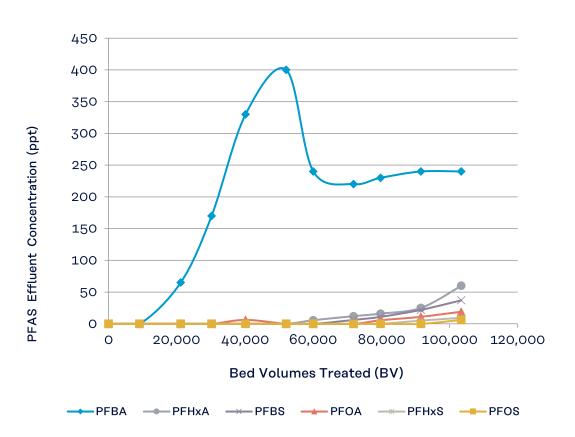
- Granular Activated Carbon (GAC) and CCC's Equipment Line are proven treatment solutions for PFAS removal
- Over 150 full scale installations for PFAS removal across the United States
- Offer complete solution including activated carbon, equipment, onsite installation and exchange services, reactivation and financing

Proven products and solutions for drinking water, wastewater, remediation and POET

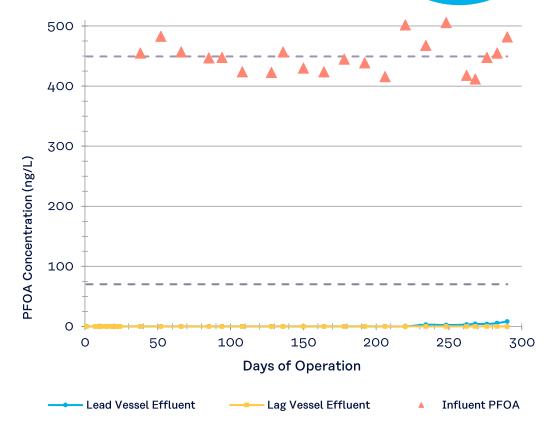
Laboratory & field testing for tailored solutions

Carbon reactivation removes PFAS from the spent carbon and abatements these compounds

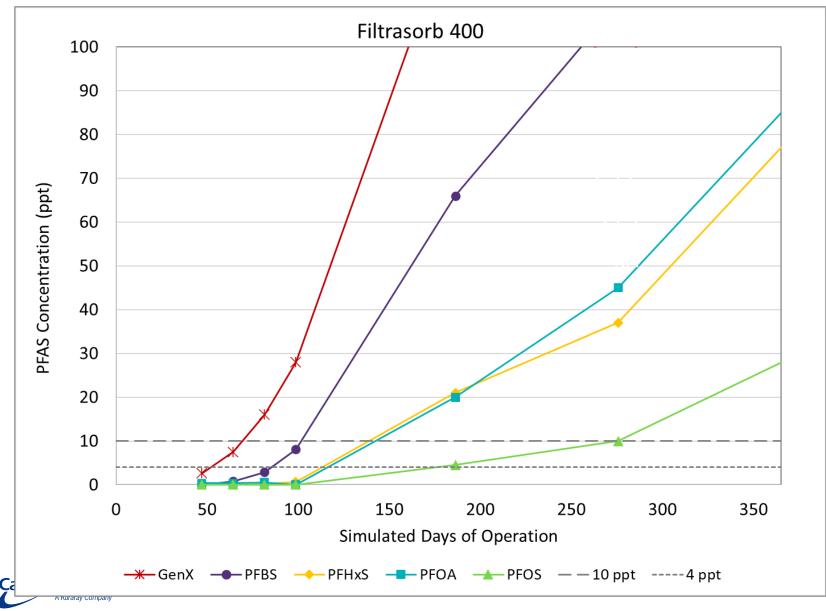
Applications Engineers and R&D team dedicated to solving customer problems


Unrivaled technical service

© Calgon Carbon Corporation 2021

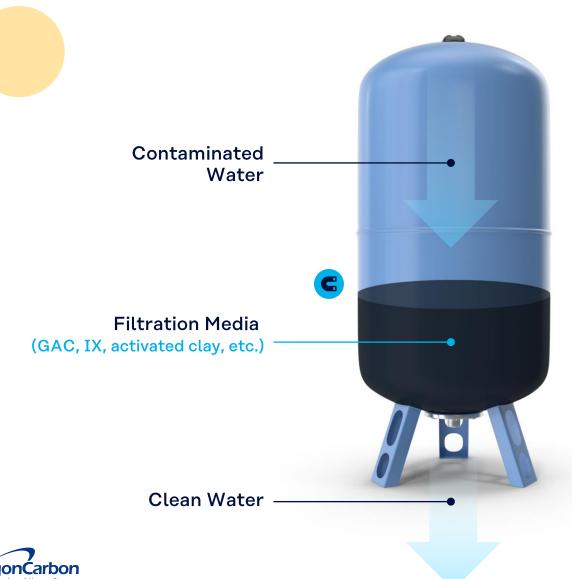

Calgon Carbon's FILTRASORB® product is proven and capable of meeting non-detect for a range of PFAS

Peer-Reviewed Lab-Scale Testing Demonstrating FILTRASORB's Effectiveness for PFAS Removal



Full-Scale Model 10 System 10 minutes EBCT

GAC Effectively Treats to MCLs

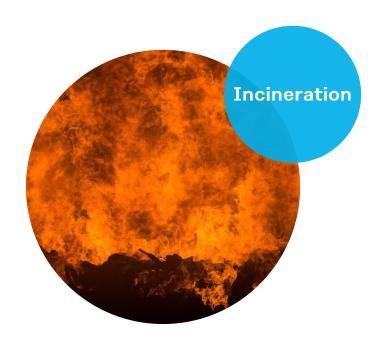


- Rapid Small-Scale Column Test simulating CCC Model 8 Vessel with 10 minutes EBCT
- GAC service life highly dependent on
 - PFAS compounds present
 - PFAS concentrations
- Proper testing is critical

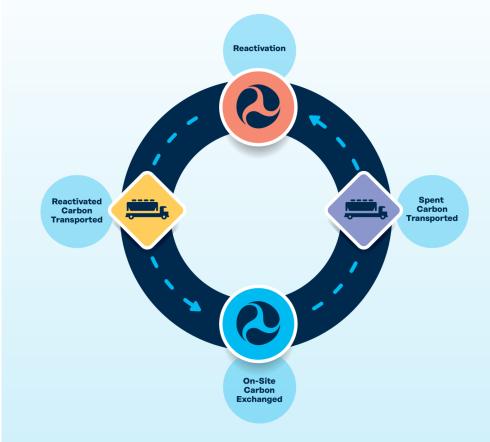
Target Feed Concentrations

PFOA	200 ppt	
PFOS	200 ppt	
PFHxA	200 ppt	
PFHxS	200 ppt	
PFBA	200 ppt	
PFBS	200 ppt	
GenX	100 ppt	
<u>6:2 FTS</u>	<u>200 ppt</u>	
TOTAL	1500 ppt	

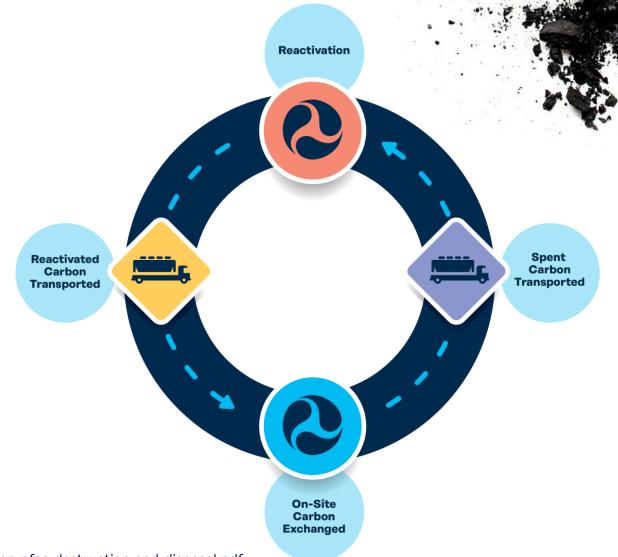
Water treatment removes contaminants from water



What happens to the media once its useful life is over?


Reactivation is a unique disposal & reuse for GAC ONLY

O Common methods used by many technologies (IX resin, Clay-based or novel sorbents):



Reactivation

How Our Products Help Customers and Society

- Certified destruction of the adsorbed materials (which may be classified as hazardous (CERCLA or RCRA))
- No landfill liabilities and more sustainable solution
- 80% Reduction in CO₂ vs. the production of virgin carbon
- Lower cost than incineration and more sustainable
- Recognized by EPA as a disposal method for PFAS-laden activated carbon in their 2024 Interim Guidance¹
- Recommended by DoD as the disposal method for spent PFAS-containing GAC from DoD sites in a July 2023 memo²

- 1. https://www.epa.gov/system/files/documents/2024-04/2024-interim-guidance-on-pfas-destruction-and-disposal.pdf
- 2. https://www.acq.osd.mil/eie/eer/ecc/pfas/docs/news/Memorandum_for_Interim_Guidance_on_Destruction_or_Disposal_of_Materials_Containing_PFAS_in_the_U.S.pdf

Reactivation

Global Reactivation Capacity

- UNITED STATES
 - 5 Reactivation sites
 - 2 RCRA facilities
 - 3 Potable facilities
 - 4 sites are CERCLA Approved
- UNITED KINGDOM
 - 2 Reactivation sites
- **■** BELGIUM
 - World's largest reactivation site
- CHINA
 - 2 Reactivation sites

Calgon Carbon reactivates millions of pounds of activated carbon every year

Over 30 years of reactivation experience globally

Reactivation Chemistry

Low temperature pre-treatment

Drying of water at 100°C

Physical processes and reactions

 Thermal Devolatilization and Desorption at 100-250°C

High temperature carbon condensation reactions

 High temperature pyrolysis/ calcination chemistry at 200-750°C

High temperature carbon gas/solid reactions

 Chemical reactions for Carbon Gasification with water vapor, carbon dioxide, or oxygen at 800-1000°C

Multi-hearth furnace

algor Calgon Carbon Corporation 2022

Carbon Acceptance Testing Objectives

Carbon Acceptance testing includes a series of evaluations to confirm a spent carbon can be effectively and safely reactivated.

Each project is thoroughly evaluated to ensure it meets CCC's requirements for:

Safety/Toxicity Regulatory Compliance Protection of:

- The Environment
- Plant Personnel
- Process Equipment
- Quality of Reactivated Product

- Apparent Density (AD)
- pH
- Ignitability
- Nature of spent carbon:% Halides (Cl, F, Br)% Sulfur
- Reaction with water
- % Moisture
- Radiation Screening Inorganics
- Quality of Reactivated Product

- Liquid phase applications only ICP Metals including lead, mercury % hex chrome
- BTU content (RCRA-hazardous only

Reactivation is a Unique Process

United States Code of Federal Regulations, 40 C.R.F. 260.10 defines an <u>incinerator</u> as "any enclosed device that: Uses controlled flame combustion and neither meets the criteria for classification as a boiler, sludge dryer, or carbon regeneration unit, nor is listed as an industrial furnace; or meets the definition of infrared incinerator or plasma arc incinerator."

A carbon regeneration unit is defined as "any enclosed thermal treatment device used to regenerate spent activated carbon" (Hazardous Waste Management, 2022)

Reactivation ≠ Incineration

Reactivation ≠ Regeneration

https://www.calgoncarbon.com/app/uploads/PFAS-Reactivation-Memo-06022020.pdf

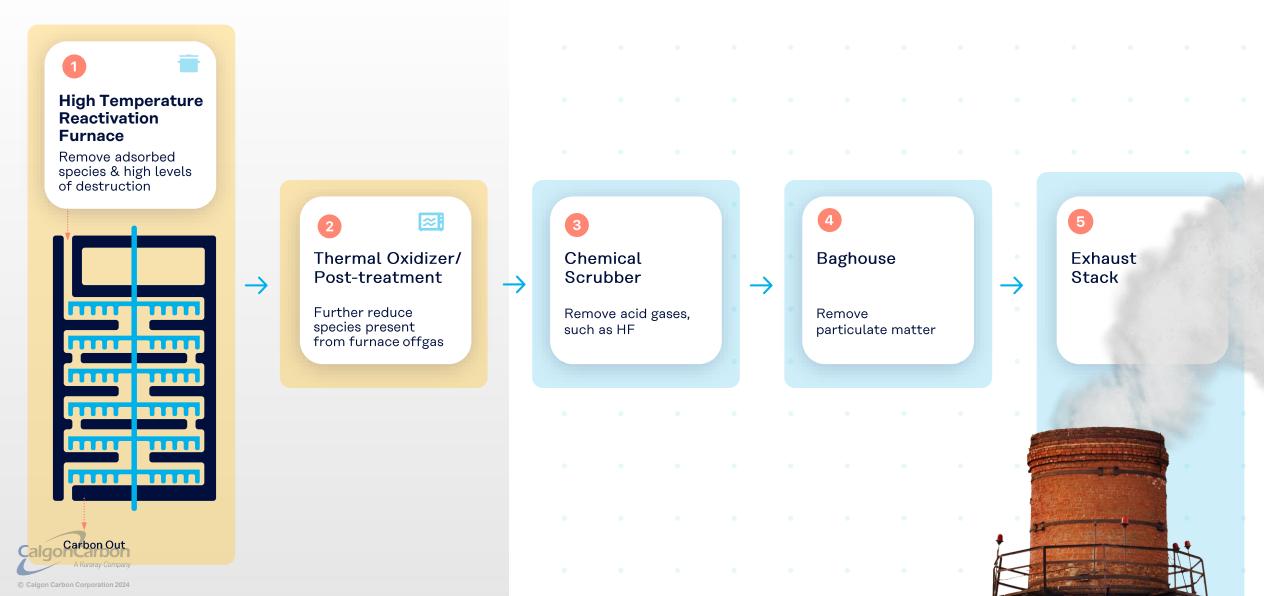
Regeneration vs. Reactivation for GAC

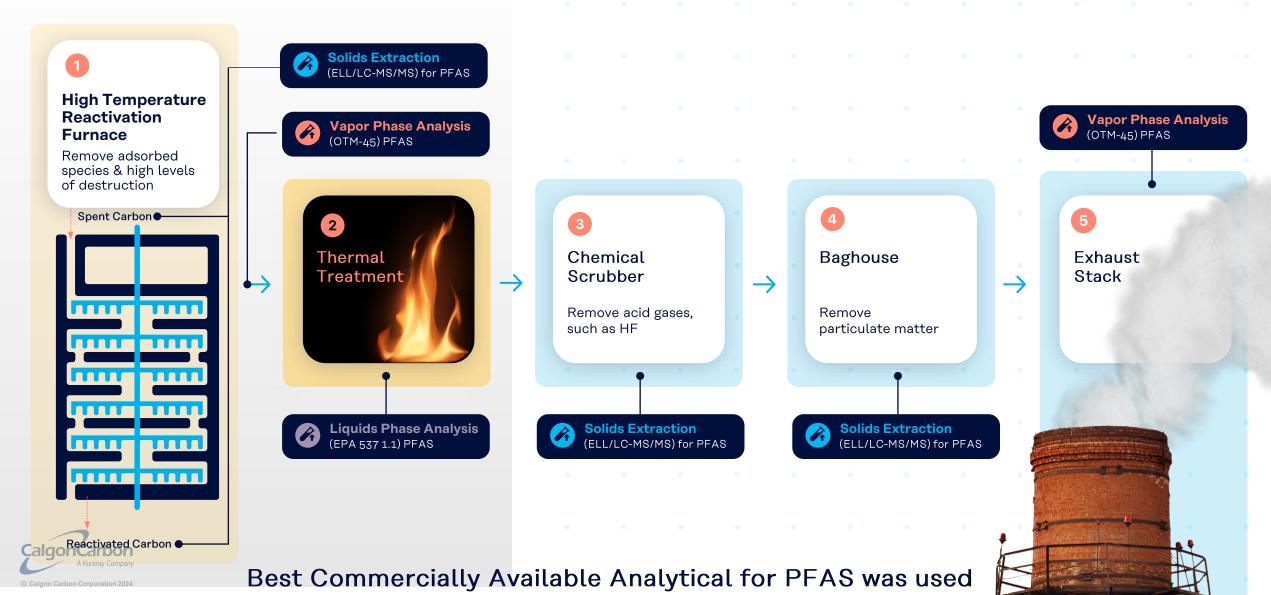
Reactivation

Reactivation is a high-temperature thermal process that removes and destroys contaminants from the carbon's pore structure allowing the product to be reused.

Regeneration

Regeneration utilizes steam, solvents, or a low temperature process to remove a portion of the adsorbed species, allowing the product to be reused. Typically results in a waste stream as this is not a destructive process.




NEWMOA Poll Question

Calgon's Reactivation is a unique process with multiple destructive technologies

Calgon's Reactivation is a Unique Process with Multiple Destructive Technologies

Recent Peer Reviewed Journal Article Demonstrating Calgon Carbon's Reactivation Effectiveness

Published
Open
Access
13-Sept2022

Calgon's Reactivation effectively removes PFAS below detection limits

Spent Carbon

Reactivated Carbon

Composito Sample for Each Emissions Tost

Composite Sample for Each Emissions Test
--

PERFLUOROBUTANOIC ACID
PERFLUOROPENTANOIC ACID
PERFLUOROHEXANOIC ACID
PERFLUOROHEPTANOIC ACID
PERFLUOROOCTANOIC ACID
PERFLUORONONANOIC ACID
PERFLUORODECANOIC ACID
PERFLUOROUNDECANOIC ACID
PERFLUORODODECANOIC ACID
PERFLUOROTRIDECANOIC ACID
PERFLUOROTETRADECANOIC ACID
PERFLUOROBUTANESULFONIC ACID
PERFLUOROPENTANESULFONIC ACID
PERFLUOROHEXANESULFONIC ACID
PERFLUOROHEPTANESULFONIC ACID
PERFLUOROOCTANESULFONIC ACID
PERFLUORONONANESULFONIC ACID
PERFLUORODECANESULFONIC ACID
PERFLUORODODECANESULFONIC ACID
PERFLUOROOCTANESULFONAMIDE
NMEFOSAA
NETFOSAA
HFPODA
4:2 FLUOROTELOMER SULFONIC ACID
6:2 FLUOROTELOMER SULFONIC ACID
8:2 FLUOROTELOMER SULFONIC ACID
10:2 FTS
PERFLUOROHEXADECANOIC ACID
PERFLUOROOCTADECANOIC ACID
SUM 29 PhAS COMPOUNDS:
ÇalgonCarbon

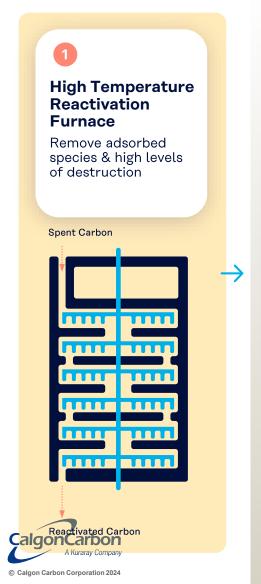
ng/g (ppb)	
PFBA	
PFPEA	
PFHXA	
PFHPA	
PFOA	
PFNA	
PFDA	
PFUNDA	
PFDODA	
PFTRIDA	
PFTETDA	
PFBS	
PFPES	
PFHXS	
PFHPS	
PFOS	
PFNS	
PFDS	
PFDOS	
PFOSA	
NMEFOSA	
NETFOSAA	
GENX	
4:2 FTS	
6:2 FTS	
8:2 FTS	
10:2 FTS	

	Composite Sample for Each Emissions Test			
	TEST 1	TEST 2	TEST 3	
	6300	6700	4700	
	2600	2500	1500	
	3700	2900	1600	
	1600	1300	620	
	18000	14000	5800	
	88	72	53	
	71	51	21	
Ì	45	24	24	
	<9.7	<9.1	<9.6	
	59	30	28	
	<9.7	<9.1	<9.6	
	11000	8200	6300	
	6700	4700	1200	
	33000	22000	5900	
	5100	3100	810	
	16000	12000	6700	
	40	27	9.9	
	180	110	37	
	<32	<30	<32	
	340	340	380	
Ì	720	550	560	
	610	520	440	
	6500	40000	55000	
	<32	<30	<32	
	290	110	800	
	<48	<46	<48	
	<32	<30	<32	
	<9.7	<9.1	<9.6	
	<9.7	<9.1	<9.6	
	112943	119234	92483	

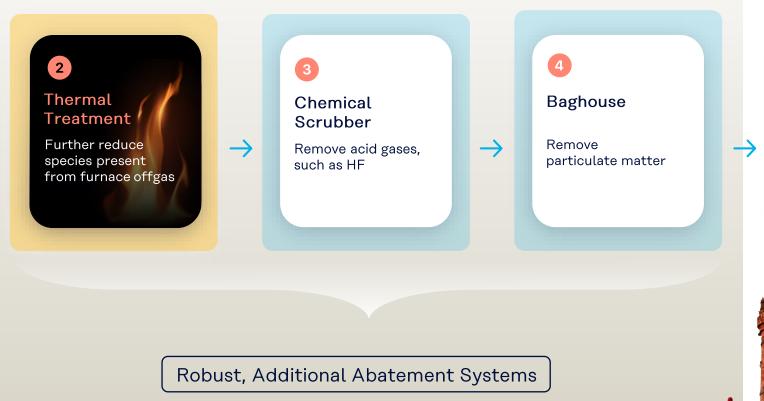
Composite Cam	pte for Each Er	1110010110 1
TEST 1	TEST 2	TEST 3
<1.9 (ND)	<1.9 (ND)	<1.9 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<1.9 (ND)	<1.9 (ND)	<1.9 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<1.9 (ND)	<1.9 (ND)	<1.9 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
<1.9 (ND)	<1.9 (ND)	<1.9 (ND)
<1.9 (ND)	<1.9 (ND)	<1.9 (ND)
<1.9 (ND)	<1.9 (ND)	<1.9 (ND)
<1.9 (ND)	<1.9 (ND)	<1.9 (ND)
<1.9 (ND)	<1.9 (ND)	<1.9 (ND)
<2.9 (ND)	<2.9 (ND)	<2.9 (ND)
<1.9 (ND)	<1.9 (ND)	<1.9 (ND)
<0.58 (ND)	<0.58 (ND)	<0.58 (ND)
2.2 / <0.57 (ND)	<0.58 (ND)	<0.58 (ND)
2.2	0	0

A Kuraray Company

Destruction Efficiency Calculations from Spent Carbon to Furnace; Furnace to Stack; and overall Spent Carbon to Stack


	Total PFAS (lb/hr)	Incremental Destruction Removal Efficiency (DRE)	Overall DRE
Spent Carbon (29 compound list)¹	0.748		
Furnace off-gas (36 compound list) ²	8.41×10 ⁻⁵	99.989%	
Stack emissions (36 compound list) ²	4.88×10 ⁻⁵	42.024%	99.993%

Reactivation Demonstrated >99.99% Destruction for Total PFAS



Calgon's Furnace & Abatement System PFAS DREs

DRE PFAS: >99.9%

Exhaust

Stack

Fluoride Measurements

	Total PFAS (lb/hr)	Calculated Total Fluoride from PFAS (lb/hr)	Measured Total Fluoride (lb/hr)
Spent Carbon	0.748	0.396	9.05
Reactivated Carbon	0.000	0.000	2.61
Furnace off-gas	8.41E-05	5.47E-05	2.95
Abatement Dust	0.000	0.000	1.26

- Mass balance at 61.4% on total fluoride
- Fluoride is very reactive with furnace linings, process equipment, EVERYTHING!

Fluoride Mass Balances are very difficult in the field

Conclusions & Key Findings

Calgon's Reactivation is a unique process that thermally removes PFAS and achieves high destruction in the reactivation furnace and our robust abatement systems

Reactivation is very different than Regeneration

Reactivation is very different than Incineration

Calgon Carbon's proprietary reactivation process and conditions achieved > 99.99% PFAS destruction for total PFAS

High levels of hydrogen fluoride generated support mineralization of these compounds

Reactivation is a safe, proven, simple, costeffective and fully commercial offering

Reactivation is sustainable process that has 80% reduction in CO₂

Contact:

Jennifer Shultz Senior Technical Sales Representative Jennifer.Shultz@Kuraray.com

https://www.nomorepfas.com/

https://www.calgoncarbon.com/

Thank You!

