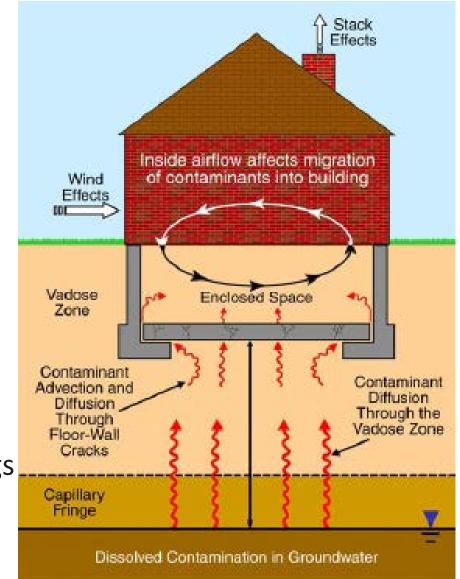
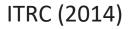
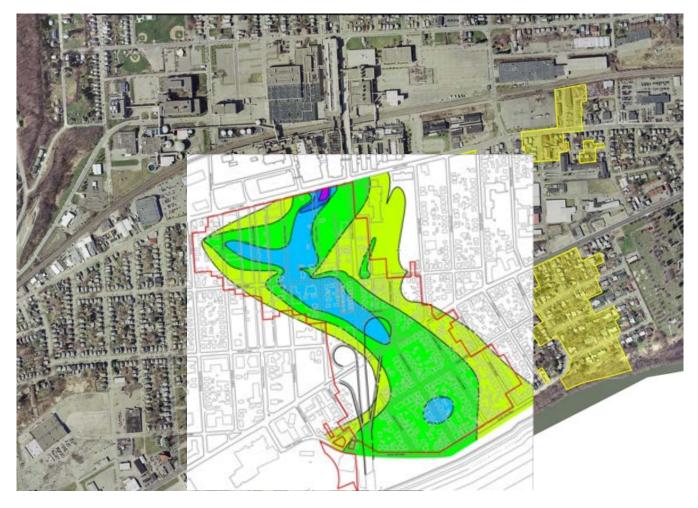


Vapor Intrusion: Residential Investigation & Mitigation

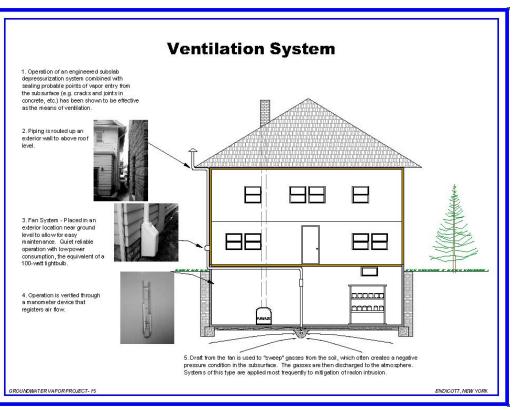
January 16, 2024



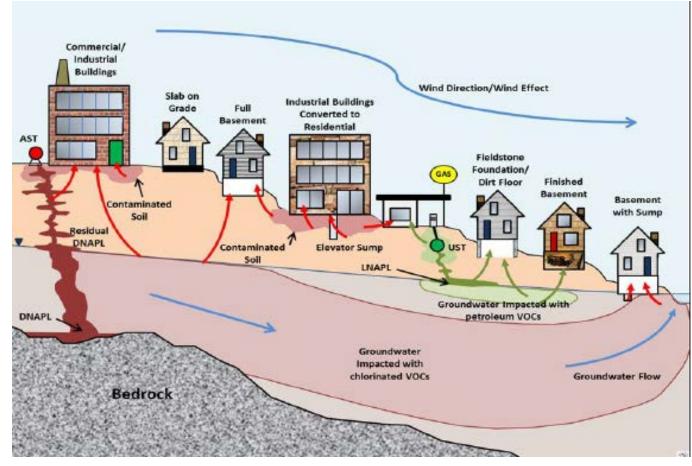

Presented by: David Shea, P.E. Principal Engineer Sanborn, Head & Associates, Inc. Bedford, NH <u>dshea@sanbornhead.com</u> (603) 415-6130


Topics:

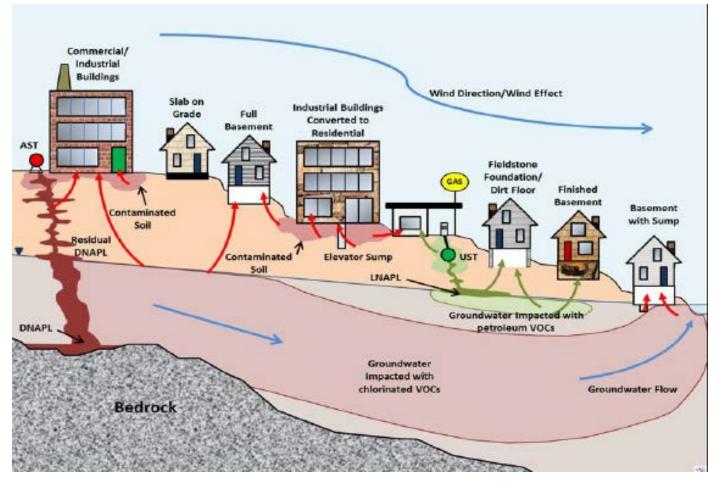
- The vapor intrusion (VI) pathway
- VI guidances and screening levels
- VI investigation methods
 - Conventional sampling
 - Technologies/tools to address uncertainties
- VI mitigation for residential buildings
 - Rapid response
 - Long-term mitigation for existing and new buildings
 - Maintenance and monitoring
 - Termination and closure



Vapor Intrusion from TCE Plume, Endicott, NY



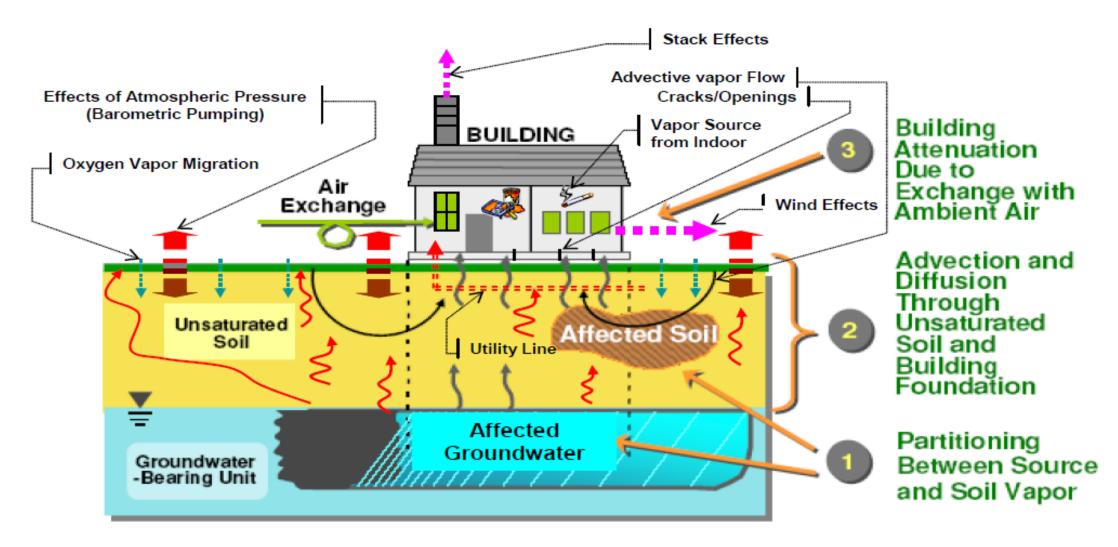
- One of the largest vapor intrusion sites in the US
- Nearly 1000 properties assessed over a 350-acre TCE plume in groundwater
- Successful mitigation of over 450 homes and businesses


What is Vapor Intrusion?

"Vapor intrusion is the general term given to migration of hazardous vapors from any subsurface contaminant source, such as contaminated soil or groundwater or contaminated conduit(s), into an overlying building or unoccupied structure via any opening or conduit...Vapor intrusion is a potential human exposure pathway". (EPA, 2015 VI Guidance)

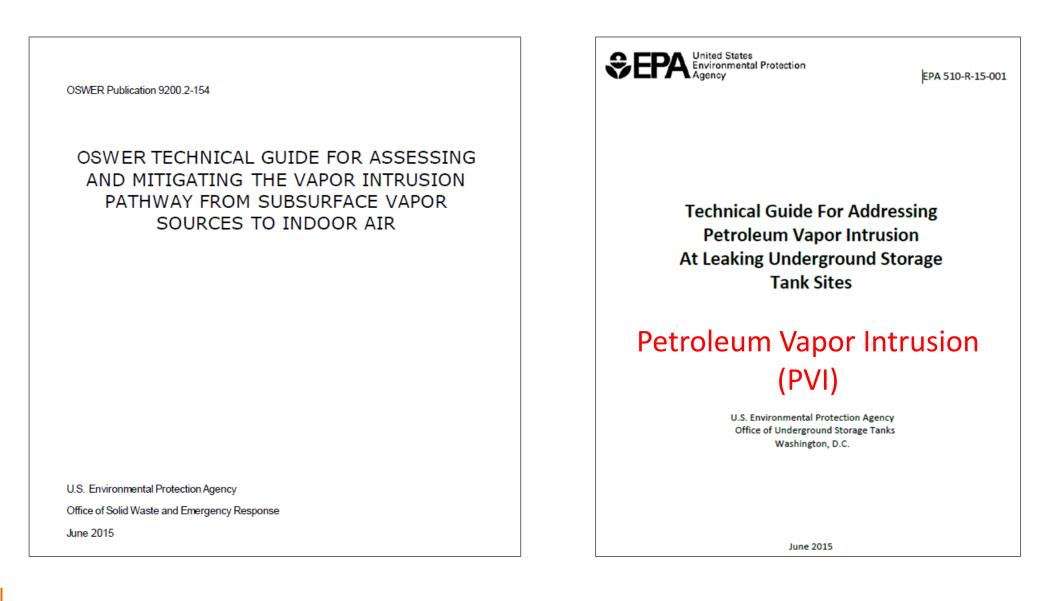
SANBORN HEAD

A "complete" VI pathway requires:


Mass DEP VI Guidance, 2016, Fig 2.1

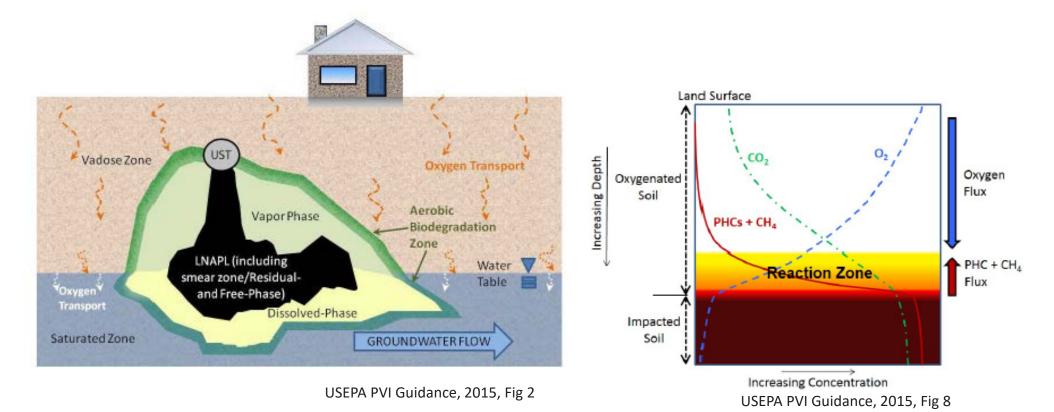
- A subsurface source of vapor-forming chemicals
- A transport route to a building
- A means of vapor entry into the building (e.g., openings in the foundation)
- One or more receptors (people) in the building when the vapor-forming chemicals are present in indoor air

The VI pathway is incomplete if one or more of the above conditions is absent (and VI mitigation is not generally warranted)


SANBORN

Key Elements of the Conceptual Site Model for VI

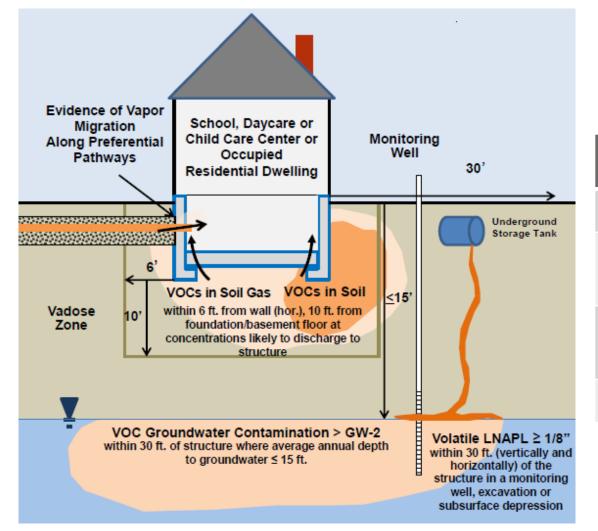
WA Dept of Ecology, VI Guidance, 2022, Fig 1


Chlorinated VOC VI vs. Petroleum VI – USEPA Technical Guides

7

Key VOCs associated with PVI from petroleum hydrocarbons (PHCs)

- Benzene, trimethylbenzenes (TMBs), and naphthalene
- Additives such as MTBE, TBA, and EDB
- Methane from biodegradation of PHCs


PHCs generally biodegrade rapidly under aerobic conditions such that the potential for PVI is decreased compared to chlorinated VOCs, which generally persist and degrade anaerobically and slowly

Vertical Screening Distances for Petroleum VI Evaluation

USEPA PVI Guidance, 2015, Fig 6

Screening distances for VI assessment – Massachusetts example

SANBORN

HEAD

Fig 4-1 of MassDEP VI Guidance, 2016, 72-Hour Notification Requirement

VOC Proximity to Building	Horizontal	Vertical
VOCs in soil or soil gas	6 ft	10 ft
VOCs in dissolved phase plume > GW-2 standard	30 ft	15 ft
VOCs in dissolved phase plume > 10X GW-2 standard	100 ft	15 ft
Volatile LNAPL	30 ft	30 ft

NEWMOA-member States' VI Guidance

SANBORN || HEAD

State	Department	Status of VI Guidance
Connecticut	Dept of Energy and Environmental Protection	Concurrence (Oct 2017) with ITRC VI Guidance (2007); Remediation Standard Regulations – Volatilization Criteria
Maine	Dept of Environmental Protection	Supplemental VI guidance (Feb 2016) to USEPA VI guidance (2015)
Massachusetts*	Dept of Environmental Protection	Oct 2016 VI guidance
New Hampshire	Dept of Environmental Services	July 2006 VI guidance w/Feb 2013 revision
New Jersey*	Dept of Environmental Protection	May 2021 VI guidance (ver 5.0)
New York	Dept of Environmental Conservation	2006 VI Guidance
Rhode Island	Dept of Environmental Management	No stand-alone VI guidance (VI addressed in remediation regs);
Vermont*	Dept of Environmental Conservation	March 2020 VI Guidance

*MA, NJ, and VT most recent and detailed on VI data collection methods

VOC screening thresholds typically used to determine if additional investigation of the vapor intrusion pathway is required

Example – VI residential screening values for TCE

Media	Units	СТ	MA	ME	NJ	NH	NY	RI	VT	USEPA
Indoor Air	ug/m ³	1	0.4	2.1	3	0.4	2	None	0.5	0.48
Soil Gas*	ug/m ³	760	28	63	27	20	Varies	None	5 (< 5 ft) 50 (>5 ft)	16
Groundwater	ug/l	27	5	None	2	20	None	None	1.19	1.2

*Preference for subslab soil gas over exterior soil gas

Attenuation Factor and Screening Levels

Attenuation factor = α = C_{indoor air} / C_{subsurface}

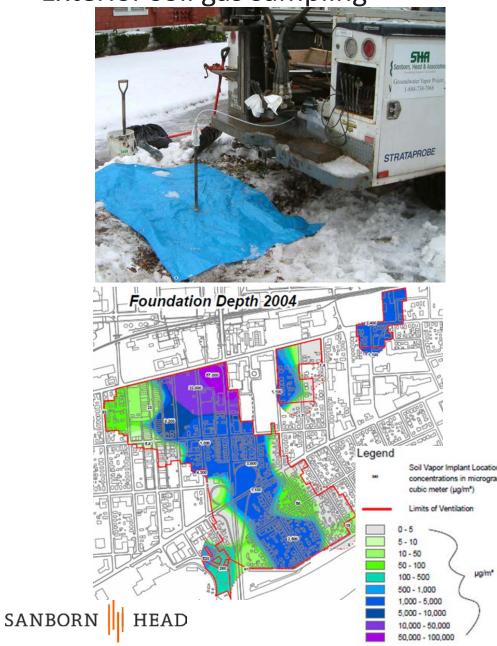
 $C_{\text{screening level, soil gas}} = C_{\text{target indoor air}} / \alpha$

 $C_{\text{screening level, groundwater}} = C_{\text{target indoor air}} / (\alpha \times H \times 1000 \text{ L/m}^3)$, H = Henry's law constant

TABLE 6-1 RECOMMENDED VAPOR ATTENUATION FACTORS FOR RISK-BASED SCREENING OF THE VAPOR INTRUSION PATHWAY¹⁸⁴

Sampling Medium	Medium-specific Attenuation Factor for Residential Buildings
Groundwater , generic value, <u>except</u> for shallow water tables (less than five feet below foundation) or presence of preferential vapor migration routes in vadose zone soils	1E-03 (0.001)
Groundwater , specific value for fine-grained vadose zone soils, when laterally extensive layers are present ¹⁸⁵	5E-04 (0.0005)
Sub-slab soil gas, generic value	3E-02 (0.03)
"Near-source" exterior soil gas, generic value except for sources in the vadose zone (less than five feet below foundation) or presence of routes for preferential vapor migration in vadose zone soils	3E-02 (0.03)
Crawl space air, generic value	1E-00 (1.0)

Many states have adopted the USEPA attenuation factors in establishing VI screening levels for soil gas and groundwater

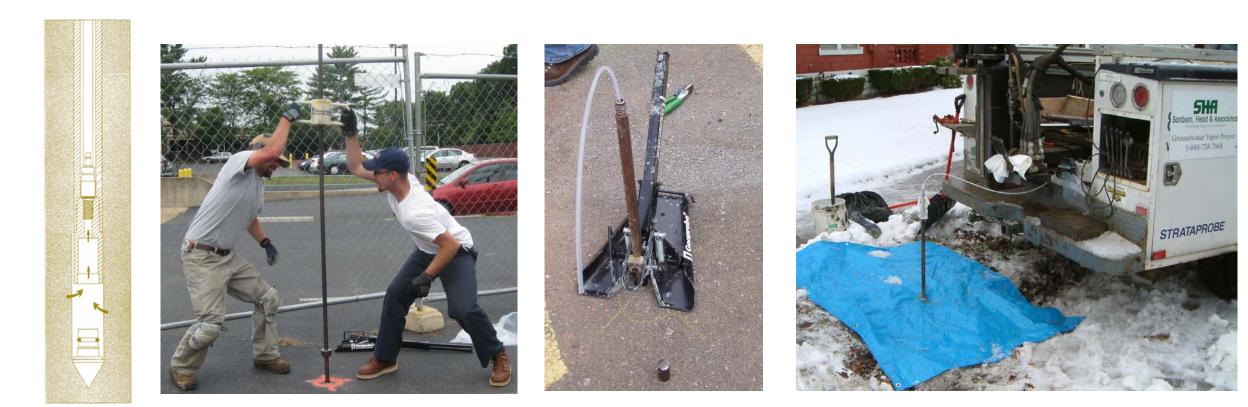

SANBORN HEAD

USEPA VISLs <u>https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator</u> 13

Investigation Sampling Methods

- Exterior soil gas temporary and permanent probes
- Subslab vapor temporary and permanent ports
- Indoor Air

Exterior soil gas sampling


Pros

- Delineate VOCs in soil gas to narrow focus of buildings needing subslab and/or indoor air sampling
- Less disruptive than interior sampling
- Less expensive than monitoring wells
- Can be done concurrent with soil sampling and logging to identify factors that promote or hinder VI (soil type, layering, moisture content)

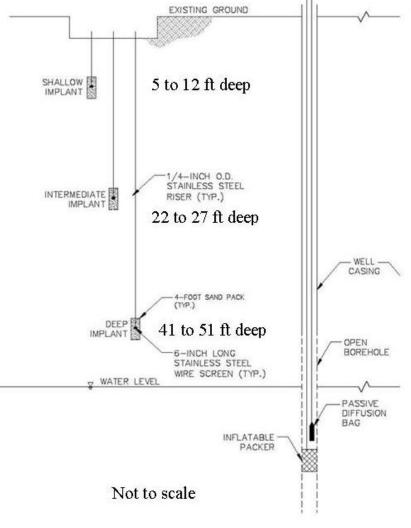
Cons

- Sub-slab vapor favored by most states for comparison to screening levels and indoor air samples
- Potential spatial and temporal variability, particularly for shallower exterior soil gas
 - May miss exterior preferential pathways such as utility trenches and sewer lines.

Exterior soil gas sampling probe – single event equipment

Hydraulic push tools

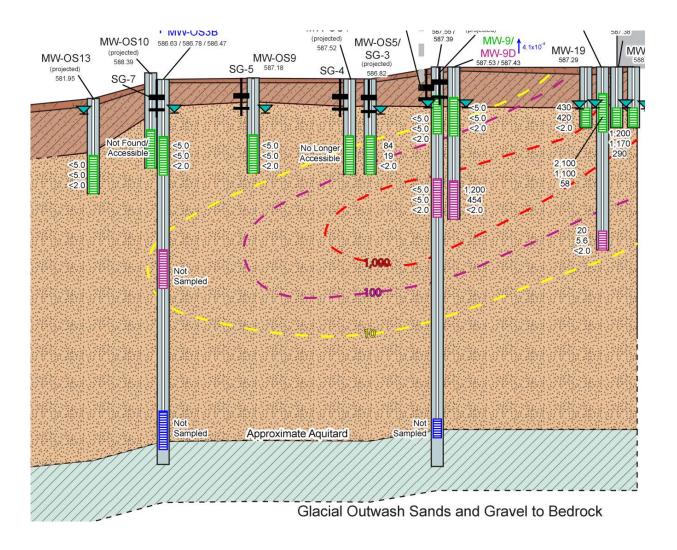
Retractable drive point connect to flexible tubing through hollow rod


HEAD

SANBORN

Hand-driven tools

Exterior soil gas sampling probe – permanent monitoring



SANBORN || HEAD

Example of exterior investigation to rule out off-site VI – Pathway not complete

SANBORN

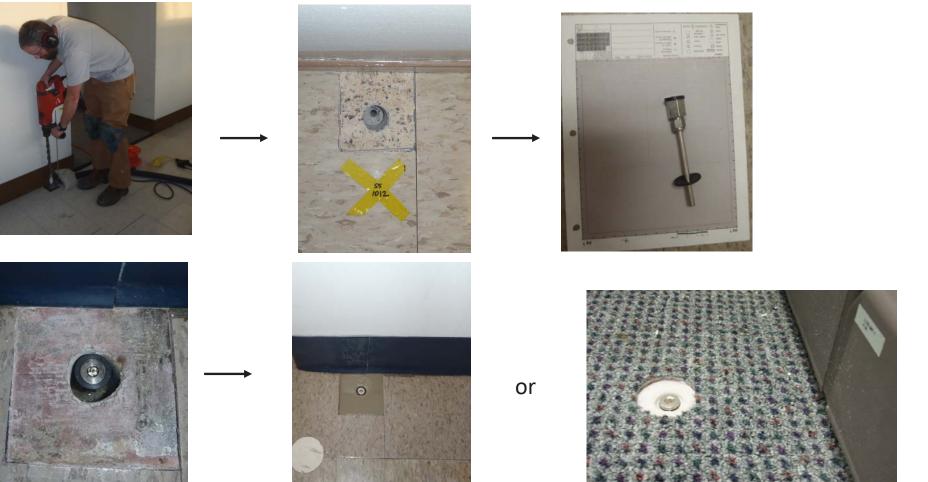
HEAD

Multiple physical and chemical lines of evidence:

- Downward hydraulic gradients
- VOC profiling consistent w "diving plume" overlain by clean water lens
- Shallow silt- and clay-rich soils with high water saturation
- TCE not detected in subsurface gas

Sub-slab soil gas sampling – single event

SANBORN


HEAD

Temporary hole drilled through slab and sealed with hot beeswax

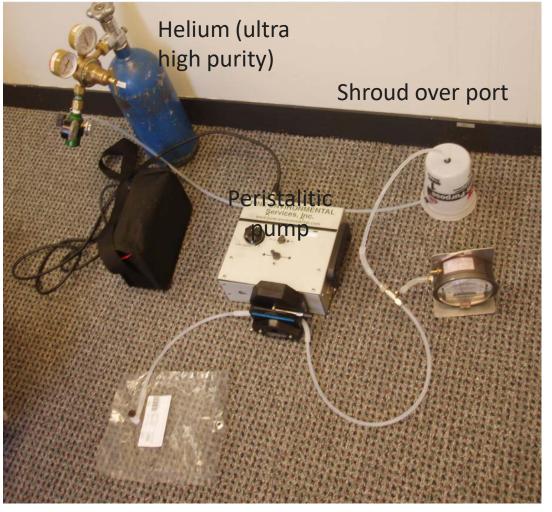
Subslab port installation – permanent installation used for:

- Multiple sampling events
- Cross-slab differential pressure monitoring to assess VI mitigation performance

Commercial product

https://www.vaporpin.com/

Subslab vapor sampling


Integrity/leak testing of port construction

Sampling into Summa[®] canister

Collection of primary and field duplicate samples

Tedlar bag for screening for helium

How many subslab samples?

State	# of subslab samples for typical residence
Mass	2 to 4, including one from the center; 1 to 2 events
NH	3, including one from the center
NJ	Minimum of 2

For larger residential or commercial/industrial buildings

Square footage of building footprint	Number of SSSG Samples
Up to 1,500	2
1,501 to 5,000	3
5,001 to 10,000	4
10,001 to 20,000	5
20,001 to 50,000	б
50,001 to 250,000	8
250,001 to 1,000,000	10
>1,000,000	12+

 Table 3-2

 Recommended Minimum Number of Sub-Slab Soil Gas Samples

NJDEP VI Guidance, 2021

"cannot be based on area alone...based on professional judgment to determine the number of subslab samples"

SANBORN || HEAD

Subslab and soil gas sampling

SANBORN

HEAD

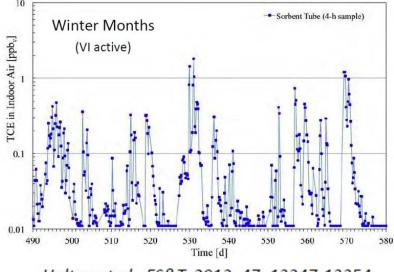
Sources of Error or Bias	QA/QC Measures	Lessons Learned	
Sample dilution due to leaky surface seal drawing in ambient air	Conduct integrity/tracer testing; maintain sample rate <200 ml/min	Use ultra-high purity helium as tracer; avoid sulfur hexafluoride (SF ₆) – greenhouse gas	
Sample dilution due to leaky tube fittings/connections	Conduct "shut-in" test (see NJ VI guidance for details)	Use gas-tight fittings (no quick- connect fittings)	
VOCs absorb/desorb from tubing material	Use Teflon-lined or stainless steel tubing	Discard flexible tubing after each sample. No Tygon, LDPE, or vinyl tubing	
Tedlar bags – bag may contain VOCs; bag allows VOC diffusion in and out over a period of days	Analyze ASAP (< 3 hrs) to avoid VOC loss through bag	Use Tedlar bags for "screening" only; Kynar bags are more robust but not readily available	
Summa [®] canister sampling	See separate table on indoor air sampling		

Indoor Air Sampling

Typical State guidelines:

- Conduct pre-sampling building inventory/assessment
- Use stainless steel canisters (Summa[®]) for lab analysis of VOCs by EPA Method TO-15
- Analyze for full TO-15 analyte list unless there is justification for narrowing list
- 24-hr time-averaged samples (8-hr acceptable for non-residential buildings in most states)
- Collect at least one sample from the likely space where VI may occur (basement or crawl space) and one sample from the lowest living level
- When collecting concurrent subslab samples, collect them after indoor air to avoid potentially cross-contamination to indoor air

Sampling with Summa[®] canisters


Sources of Error or Bias	QA/QC Measures	Lessons Learned
Contaminated canisters or flow controllers from lab	Order individually certified clean canisters/controllers and obtain lab QA/QC report	Batch certified canisters not worth the uncertainty in cleanliness
Faulty equipment – low canister vacuum on receipt	Check canister vacuums prior to field mobilization	Order extra canisters
Faulty equipment – flow controllers	Check canister vacuum frequently during sampling	Order extra controllers
Field contamination during prep/storage/shipping	Collect field blank using ultra high purity nitrogen	Order UHP nitrogen from lab – commercial gas may have trace contaminants
Leakage during return shipping	Close canister with 7 to 3 in. Hg vacuum remaining and record on Chain-of-Custody	Don't rely on canister gauge – use separate vacuum gauge
Field imprecision	Collect a field duplicate sample	Collect duplicate where you expect to get a VOC detection

The major confounding factors of indoor air sampling:

1. Background/indoor sources of VOCs

2. Time variability of VI

Holton et al., ES&T, 2013, 47, 13347-13354

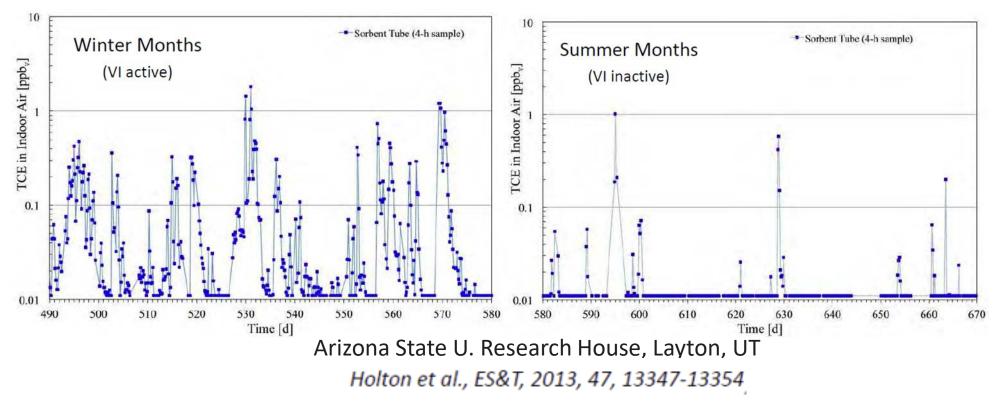
Indoor Air Sampling – Beware of indoor sources

Indoor sources of VOCs

- Household and commercial products
- Dry-cleaned clothes
- Building materials (paints, finishes, carpets, adhesives, etc.)
- Gasoline, attached garages
- VOCs entering from outdoor air

QA/QC Measures

- Conduct pre-sampling survey including field documentation and photos
- Remove commercial products 24 to 48 hrs before sampling not always feasible
- Collect outdoor air sample upwind of building or near HVAC intake
- Collect subslab samples for comparison



SANBORN || HEAT

Vapor intrusion can be extremely time variable

Variability in VOC concentrations spans 1 to 2 orders of magnitude

Assuming one or two 24-hour samples:

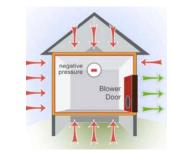
- High potential to miss VI episodes (false negative)
- High potential to overestimate long-term exposure if sampling occurs during episodic VI (false positive)
- High potential to miss max short-term exposure (false negative)

KEY POINT: A random 24-hr sample represents neither

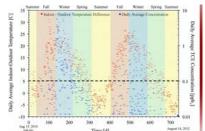
SANBORN 📗 HEAD

the worst-case short-term nor the long-term average

How many indoor air sampling events?

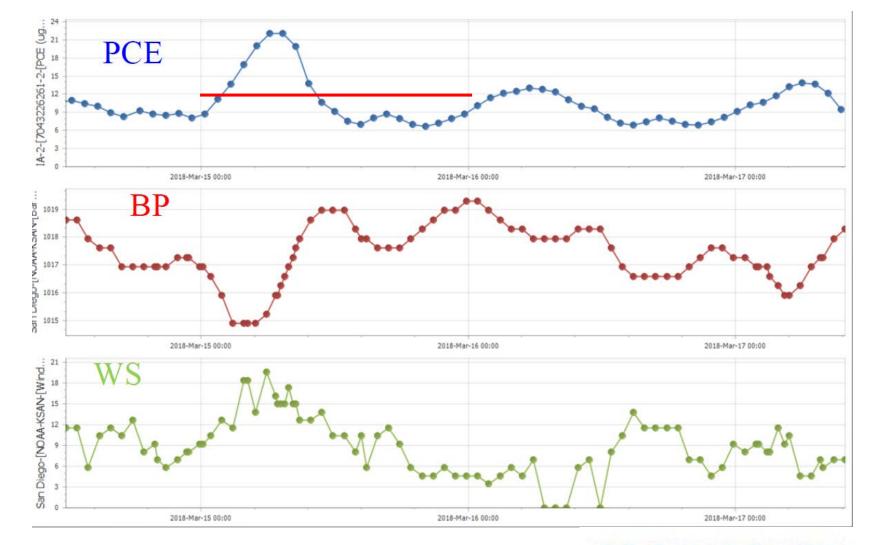

State	Guidance
Maine	4 successive "clean" rounds spaced 3 mos. apart to conclude no VI pathway
Mass	Multiple rounds across several seasons, including worst-case (Tbl 2 of VI guidance); At least 2 to 4 rounds to conclude no VI pathway
NH	1 round in late winter/early spring
NJ	1 round in the heating season (Nov 1 to Mar 31) assuming no other contradictory lines of evidence
NY	Multiple rounds across several heating seasons

Technologies/tools to evaluate VI variability and exposure risk


1. Real-time monitoring and screening

2. Building pressure tests

3. Longer-term samples



4. Guided samples (by temperature, radon, other parameters)

Continuous monitoring reveals variability

GROUNDSWELL EARTH MONITORING SOFTWARE

SANBORN || HEAD

PCE and TCE in indoor air in former mill building converted to apartments (artistic residences) \rightarrow

Instant results using portable analyzer (HAPSITE)

- Analyzed ~80 samples over 2 days in 25 apartments
- Analyzed household products, art supplies, and potential VI pathways

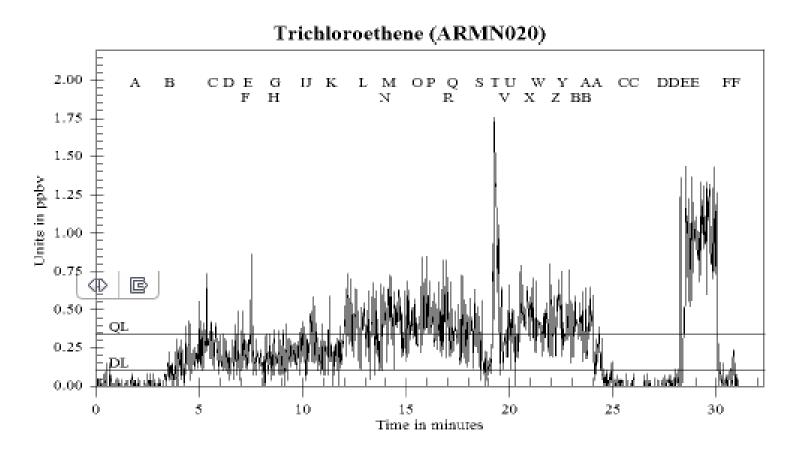
SANBORN

HEAD

Is it VI or indoor sources of chemicals?

Sniffing for VI from cracks under rugs

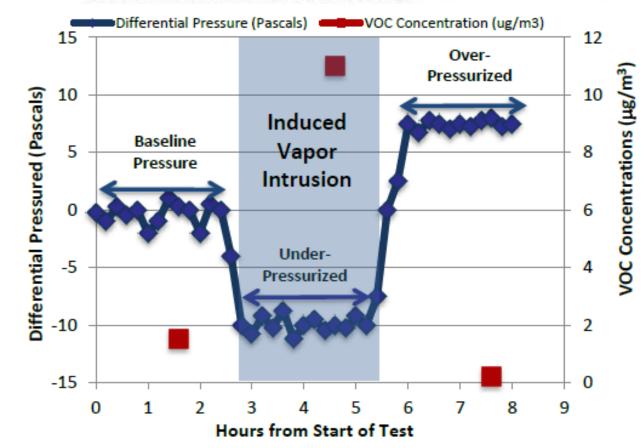
Results:


PCE due to art supplies. TCE due to VI through floor cracks.

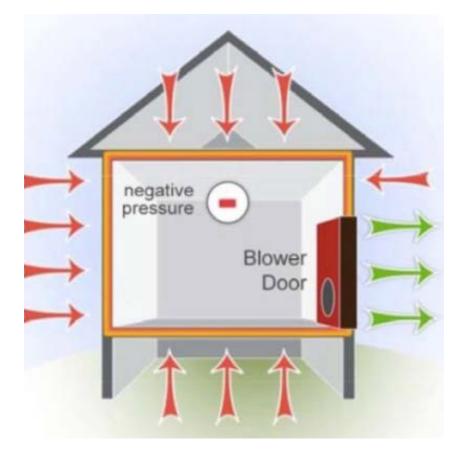
Real-time continuous VI sampling using EPA's Trace Atmospheric Gas Analyzer (TAGA) Mobile Laboratories <u>https://www.epa.gov/ert/trace-atmospheric-gas-analyzer-taga</u>

For more information: Archive of Aug 29, 2018 webinar: <u>https://clu-in.org/live/archive/</u>

VI Diagnostic Tool: Building Pressure Tests



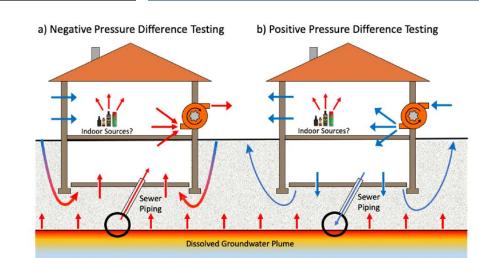
McHugh et al., ES&T, 2012, 46, 4792-4799



Evaluation of Vapor Intrusion Using Controlled Building Pressure

Thomas E. McHugh,^{†,+} Lila Beckley,[†] Danielle Bailey,[†] Kyle Gorder,[‡] Erik Dettenmaier,[‡] Ignacio Rivera-Duarte,[‡] Samuel Brock,[‡] and Ian C. MacGregor[⊥]

Negative pressure: favors VI Positive pressure: suppresses VI



pubs.acs.org/est

Development and Validation of a Controlled Pressure Method Test Protocol for Vapor Intrusion Pathway Assessment

Yuanming Guo,* Paul Dahlen, and Paul C. Johnson

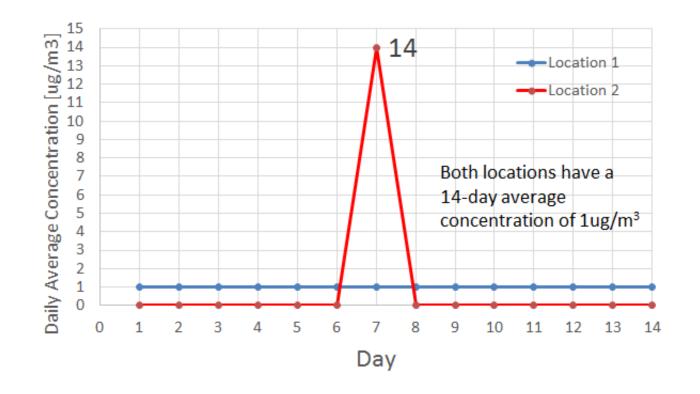
Guideline	Neg. Pressure Test	Pos. Pressure Test
Fan Location	Door or window	Door or window
Fan operating condition	Adjust flow to achieve -10 to -15 Pa (-0.04 to -0.06 wc) indoor/outdoor pressure difference	Adjust flow to achieve +10 to +15 Pa indoor/outdoor pressure difference
Duration	At least 9 air exchanges = 9 x bldg. vol/fan flow rate	4 air exchanges = 4 x bldg. vol/ fan flow rate
Air sample collection	Sample at fan intake, in each room of interest, outdoor air	Sample outdoor air and in each room of interest
Data Evaluation	Indoor VOC levels greater than initial conditions indicate VI	Indoor VOC levels greater than outdoor indicate indoor source(s)

Article

Long-term Sampling Devices (passive samplers)

Sirem

SANBORN


Pros

- Small, unobtrusive, easy to use, easy to ship
- Total cost typically less than Summa[®] canister samples
- Provide 1-day to 30-day (or more) composite samples that can capture longer term variability

Caveats

- Requires careful selection of sampling device, sorbent material, and deployment time to achieve target analyte reporting limits need to consult with laboratory
- Some VOCs are weakly absorbed and poorly retained (e.g., vinyl chloride, chloromethane)
- May miss short-term concentration peaks/spikes
- Not routinely accepted in place of 24-hr TO-15 samples for final risk exposure decisions

Assessing short-term peaks using long-term sampler results

Max. Daily Avg [ug/m³] = (Long-term conc) x (# days of deployment)

For example:

To meet TCE daily max threshold of <6 ug/m³, then 14-day avg result must be <0.43 ug/m³ (0.43 x 14 = 6)

For more information on passive samplers...

Engineering Issue

Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods

21

22

TABLE OF CONTENTS PURPOSE AND SUMMARY INTRODUCTION PASSIVE SAMPLER BASICS 3.1 Theory 3.2 Passive Sampler Types 3.3 Sorbent Types 3.4 Uptake Rates 3.5 Sampling Duration 3.6 Passive Sampler Geometry and Sorbent Combinations 3.7 Comparison of Passive Sampling to Conventional Air Sampling Methods DESIGNING AND IMPLEMENTING A PASSIVE SAMPLING PROGRAM 12 Selecting a Passive Sampler Suited to 12 Your Investigation Placing Passive Samplers Indoors 13 4.3 Placing Passive Samplers Outdoors 13 Instructions for Occupants for Passive Indoor Air Sampling Events 13 4.5 Considerations for Other Applications 14 DATA QUALITY OBJECTIVES 14 Media Preparation for Field Deployment 5.1 52 Passive Sampler Deployment—Field Handling Protocols 15 5.3 Field Quality Control Samples 16 5.4 Intermethod Duplicates INTERPRETATION OF PASSIVE SAMPLING RESULTS Measurement Uncertainty and Implications 61 to Data User 6.2 Other Lines of Evidence CURRENT CHALLENGES, LIMITATIONS, AND RESEARCH AND DEVELOPMENT NEEDS 18 71 Intermethod Comparisons 7.2 Longer-Term Sample Durations 19 19 73 Additional Compounds 7.4 Challenging Compounds 19 7.5 Application to Soil Gas 20 7.6 Sample Duration for Different Exposure Periods 20 Triggering Methods for Intermittent Passive Sampling 20 20

ACRONYMNS AND ABBREVIATIONS ACKNOWLEDGMENTS

- 10 REFERENCES

SANBORN

The U.S. Environmental Protection Agency (EPA) Engineering Issue Papers (EIPs) are a series of technology transfer documents that summarize the latest available information on selected treatment and site remediation technologies and related issues. EIPs are designed to help remedial project managers, onscene coordinators, contractors, and other site managers understand the type of data and site characteristics needed to evaluate a technology for potential applicability to their specific sites. Each EIP is developed in conjunction with a small group of scientists inside EPA and with outside consultants and relies on peer-reviewed literature, EPA reports, Web sources, current ongoing research, and other pertinent information. As such, this EIP is a technical support document describing the current state of knowledge on passive sampler application and performance and does not represent EPA policy or guidance.

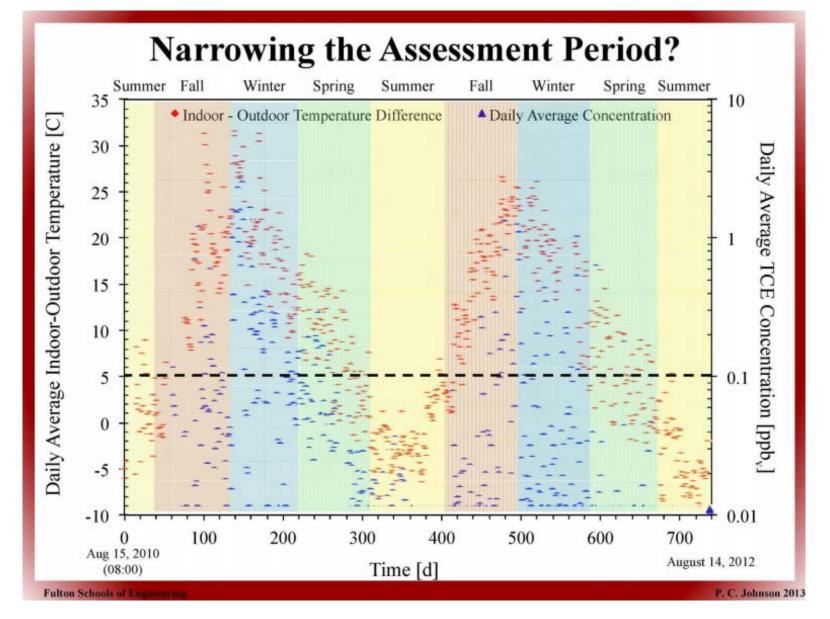
1 PURPOSE AND SUMMARY

The purpose of this EIP is to summarize the "state of the science" regarding the use of passive air samplers for investigating subsurface vapor intrusion (VI) to indoor air. This Paper covers the basics of passive sampler design, compares passive samplers to conventional methods of air sampling, and discusses considerations when implementing a passive sampling program. The Paper also discusses field sampling and sample analysis considerations to ensure data quality is adequate and interpretations based on the passive sample data are supportable. The reader is expected to have a basic technical background on the VI exposure pathway and how to use and interpret indoor air sampling data in the context of a VI investigation. For guidance and policy on VI assessment and technical support documents, please visit:

ESTCP **Cost and Performance Report**

(ER-200830)

Development of More Cost-Effective Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive-Adsorptive Sampling Techniques

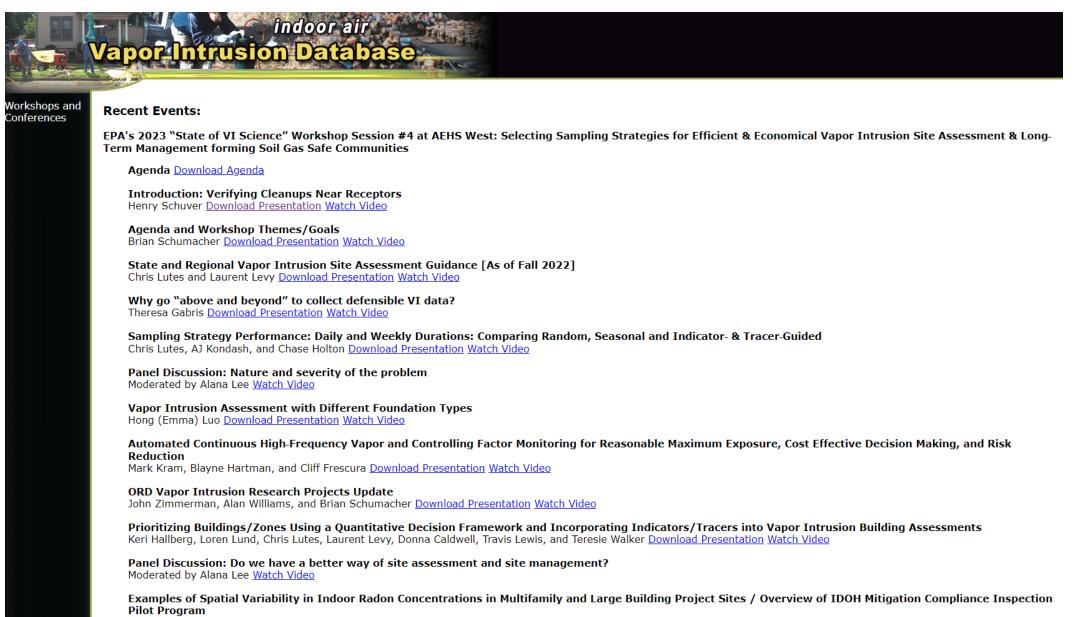

May 2015

ENVIRONMENTAL SECURITY TECHNOLOGY CERTIFICATION PROGRAM

U.S. Department of Defense

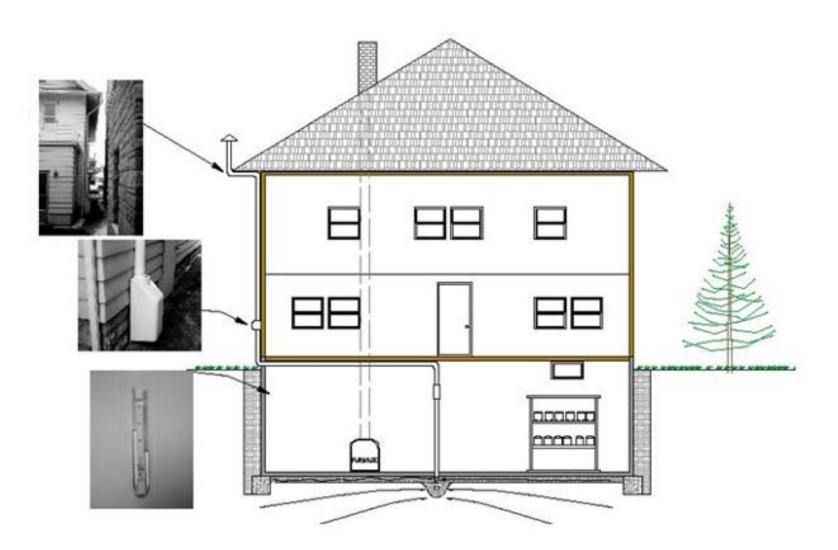
Guided Sampling: Current research topic on the use of indicator parameters such as temperature, pressure, and radon to sample indoor air when VI is most likely

SANBORN


HEAD

Sun Devil Manor, UT

Resource for "State of VI Science"


SANBORN

https://iavi.rti.org/workshops.html

Kyle Hoylman <u>Watch Video</u>

Residential VI Mitigation

SANBORN || HEAD

VI Mitigation Decision Matrix – NJ Example

			Indoor Air Concentrations (for COCs)	
			<iars< th=""><th>>IARS</th></iars<>	>IARS
ias vel	Sub-Slab Soil Gas Concentrations (for COCs)	<sgsl< td=""><td>No Action</td><td>No Action* (if no other subsurface source</td></sgsl<>	No Action	No Action* (if no other subsurface source
		>SGSL to 10X SGSL	Monitor**	Mitigate
		>10X SGSL	Monitor / Mitigate	Mitigate

IARS = Indoor Air Remediation Standard

SGSL = Soil Gas Screening Level

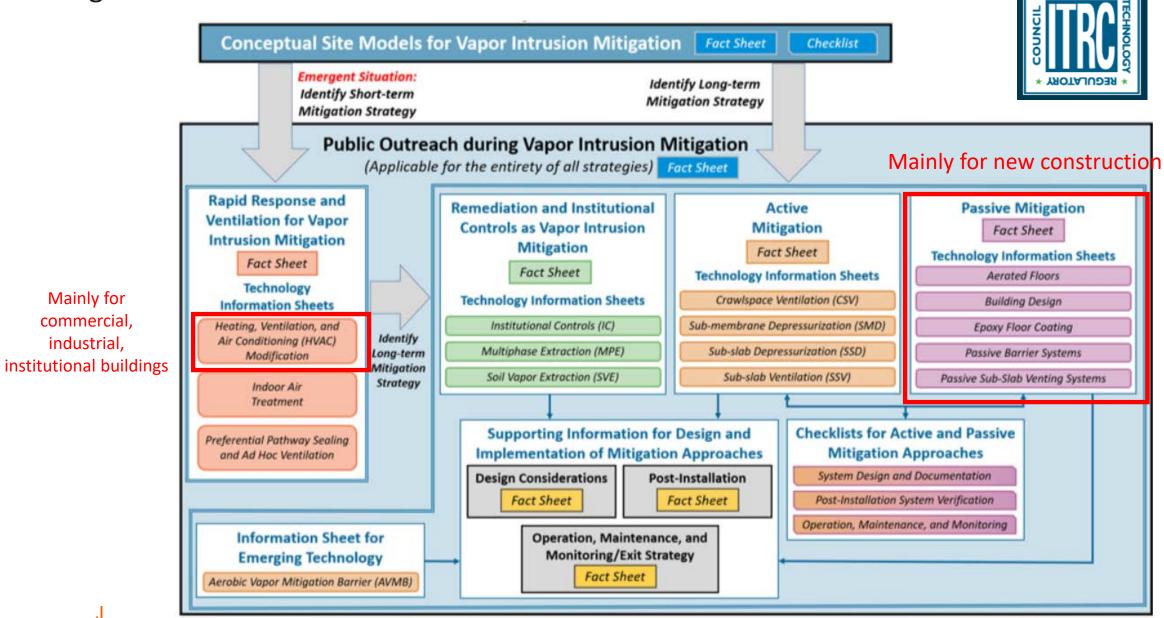
Notes:

- * Investigator should consider the potential for vadose zone (soil) contamination and/or preferential pathways as part of the assessment of vapor intrusion before concluding "no further action"
- ** Refer to Table 6-2

VI Mitigation Decision Matrix – NY Example

Soil Vapor/Indoor Air Matrix A May 2017

Analytes Assigned:


Trichloroethene (TCE), cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride

	INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)			
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m³)	< 0.2	0.2 to < 1	1 and above	
< 6	1. No further action	2. No Further Action	3. IDENTIFY SOURCE(S) and RESAMPLE or MITIGATE	
6 to < 60	4. No further action	5. MONITOR	6. MITIGATE	
60 and above	7. MITIGATE	8. MITIGATE	9. MITIGATE	

Matrix B: Tetrachloroethene (PCE), 1,1,1-Trichloroethane (111-TCA), Methylene Chloride Matrix C: Vinyl chloride

NY VI Guidance, 2017

VI Mitigation Overview – ITRC Guidance

Mainly for

commercial,

industrial,

INTERSTATE

VI Mitigation – Rapid Response

Penetration/pathway sealing

- Quick, relatively easy, relatively inexpensive
- Some penetrations may not be visible or accessible
- May not be sufficient on its own to achieve target levels
- Supplementary/complementary to active SSD system

Floor cracks/joints sealed with sealant or caulk

Utility penetration sealed with spray foam

Open floor sump

Covered sump with vent and discharge pipes (from VT VI Guidance)

VI Mitigation – Rapid Response

Air treatment units/air purifying units (ATUs/APUs) – Key characteristics

- Versatile and easy to implement
- Actively circulate indoor air and remove VOCs
- Limited and highly variable effectiveness (25% to 99% removal efficiency)
- Effectiveness at very low VOC levels is not well understood/documented
- Adsorption media (GAC) may need to be replaced if operated for months
- Make some noise and require power
- Cost ~ \$1,000 to \$2,000 each

TABLE OF CONTENTS	
BUBBOOS AND OUNTABY	Engineeri
. PURPOSE AND SUMMARY 1	technolog
2. INTRODUCTION 2 3. AIR TREATMENT SYSTEM BASICS 3	latest info
3.1 Classes of Commercially Available	site remed
Treatment Units 3	are design
3.2 Adsorption Principles and Performance 3	scene coo
3.3 Photocatalytic Oxidation 7	
3.4 Other Air Treatment Unit Types 8	managers
3.5 Multiple Technology Air Treatment Units 9	characteri
3.6 System Sizes and Geometries 9	particular
PERFORMANCE DATA AND SPECIFICATIONS 10	be useful :
4.1 Laboratory and Chamber Tests for	owners w
Efficiency and Capacity 11	quality at
4.2 Controlled (Unoccupied) Building-scale	developed
Demonstrations of Air Treatment Units 14	
4.3 Practical (Occupied) Field Applications to VI Cases 16	engineers
5. SELECTING AN AIR TREATMENT UNIT,	consultan
DESIGNING AND IMPLEMENTING AN AIR	literature,
TREATMENT UNIT APPLICATION 21	research, a
5.1 Chemical and Physical Characteristics of	this EIP a
the Air Stream to be Treated 21	current kr
5.2 Building Characteristics 25 5.3 Design Process—Standalone Units 27	are availab
5.3 Design Process—Standalone Units 27 5.4 Design Process—Differences for Duct-	
Mounted Systems 32	compoun
5.5 Air Treatment Unit Deployment 33	group of o
5.6 Communication and Instructions for	chemical v
Occupants During Air Treatment Unit Deployment and Operation 38	enter build
Deployment and Operation 36 MONITORING AND VERIFYING AIR	petroleum
TREATMENT UNIT PERFORMANCE 36	cleaning s
CURRENT CHALLENGES, LIMITATIONS.	and indus
AND RESEARCH AND DEVELOPMENT	TCE). Th
NEEDS 37	guidance.
7.1 Technology Development and Chamber	guidance.
Verification Needs 38 7.2 Field-Scale Testing, Verification, and	1. PURE
7.2 Field-Scale Testing, Verification, and Tech Transfer Recommendations 39	i. POIN
REFERENCES 40	This EIP
ATTACHMENT A.	selecting a
AVAILABLE VOC AIR CLEANER	VOCs, als
EQUIPMENT 45	When sele

TABLE OF CONTENTS

The U.S. Environmental Protection Agency (EPA) ting Issue Papers (EIPs) are a series of gy transfer documents that summarize the ormation on selected waste treatment and diation technologies and related issues. EIPs ned to help remedial project managers, onordinators, contractors and other site understand the type of data and site istics needed to evaluate a technology for a application at their sites. This EIP may also for building owners/operators and home vho may have a concern about the indoor ai their location(s). Each EPA EIP is ed in conjunction with a small group of and scientists from inside EPA and outside nts, with a reliance on peer-reviewed EPA reports, Web sources, current ongoing and other pertinent information. As such, assembles, organizes, and summarizes the mowledge on air treatment technologies that able for removing volatile organic nds (VOCs) from indoor air. VOCs are one chemicals that can easily become gases, or vapors, which can migrate through soil and ldings. Well-known examples of VOCs are m products (e.g., gasoline or diesel fuel), dry solvents (e.g., perchloroethylene, aka perc) strial degreasers (e.g., trichloroethylene, his EIP does not represent EPA policy or

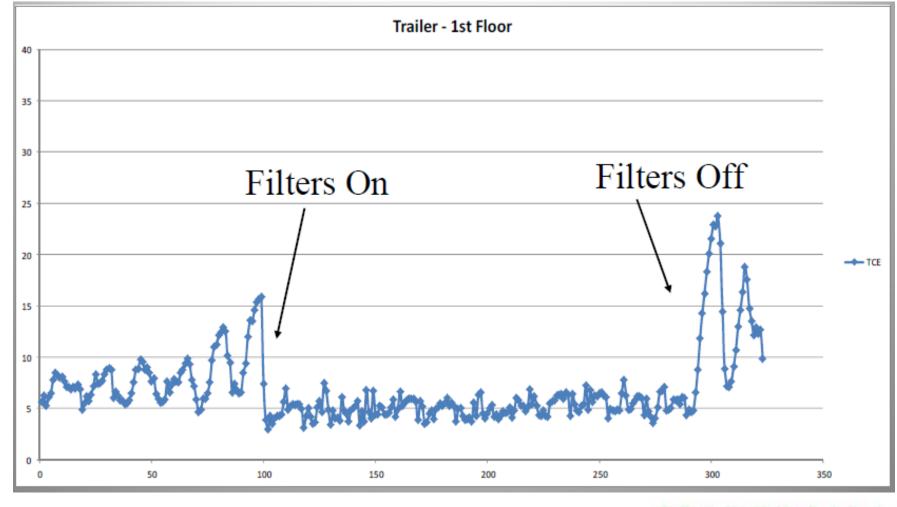
Engineering Issue

Adsorption-based Treatment Systems for

Removing Chemical Vapors from Indoor Air

1. PURPOSE AND SUMMARY

This EIP summarizes the state of the science on selecting and using indoor treatment technology for VOCs, also known as air treatment units (ATUs). When selected and operated correctly, ATUs remove VOCs from indoor air to keep their concentrations below specified limits. This paper describes the


https://cfpub.epa.gov/si/si public record report.cfm?Lab=NERL&dirEntryId=337835

101

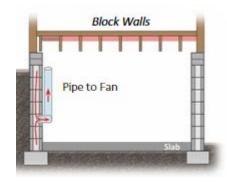
ATTACHMENT B.

AIR CLEANER EQUIPMENT

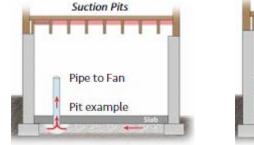
Example of Air Treatment for Rapid Response

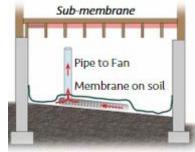
HARTMAN ENVIRONMENTAL GEOSCIENCE

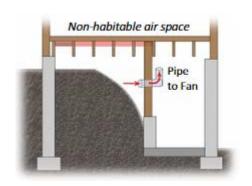
VI Mitigation – Active Mitigation

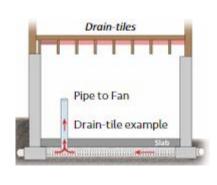

Use an electric-powered fan or blower to collect vapors and discharge them away from a building.

- Sub-Slab Depressurization (SSD) System
- Sub-Slab Ventilation (SSV) System
- Sub-Membrane Depressurization (SMD) System
- Crawlspace Ventilation (CSV)
- Drain Tile Depressurization
- Block Wall Depressurization


Copyright © 2023 AARST 527 N Justice Street, Hendersonville, NC 28739


49


https://standards.aarst.org/



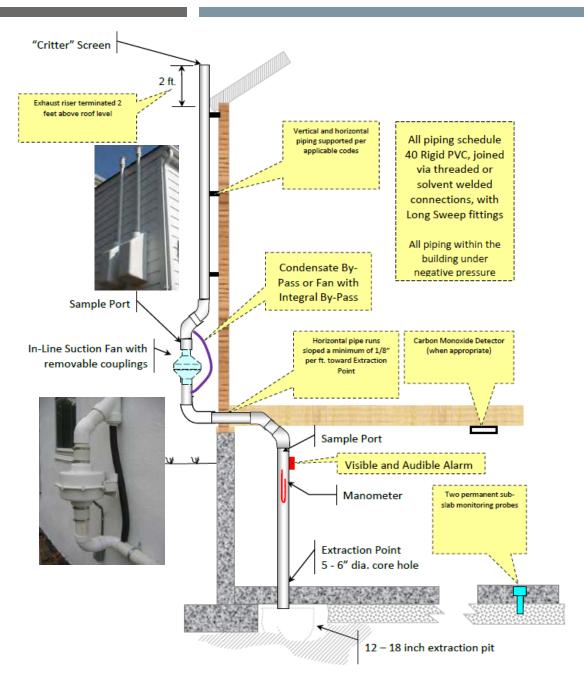
HEAD

SANBORN

Sub-Slab Depressurization (SSD) System

Key Components

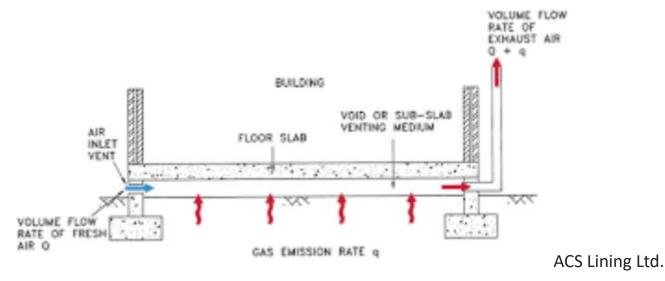
- Suction pit(s)
- Extraction pipe sealed to the floor slab
- Suction fan on outside of building
- System piping with sampling port
- Condensate bypass
- U-tube manometer, vacuum gauge, or pressure sensor
- Exhaust riser to above roof level and away from windows and air intakes
- Sub-slab monitoring points for vacuum verification
- Remote telemetry to alert owner/operator/regulator of system malfunction (MassDEP requirement)

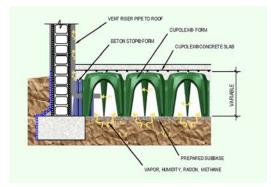

Key Design Considerations

HEAD

- Building survey to identify pathways/penetrations for sealing
- Groundwater depth

SANBORN

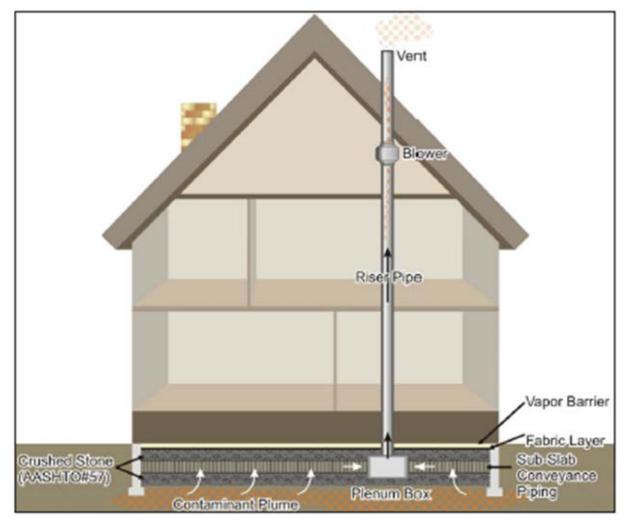

- Diagnostic testing for negative pressure (vacuum) field extension below slab/foundation to determine number of extraction points
- Back-draft evaluation for combustion gas spillage/leakage
- No positive pressure pipe or fans inside occupied space


MassDEP VI Guidance, Fig 7, 2016

Sub-Slab Ventilation

Different from SSD in that the objective is to sweep the air from below the slab to reduce the concentrations below the slab (high flow, low vacuum) – requires relatively high permeability material below the slab.

Aerated Floors – used to create open void space below the slab

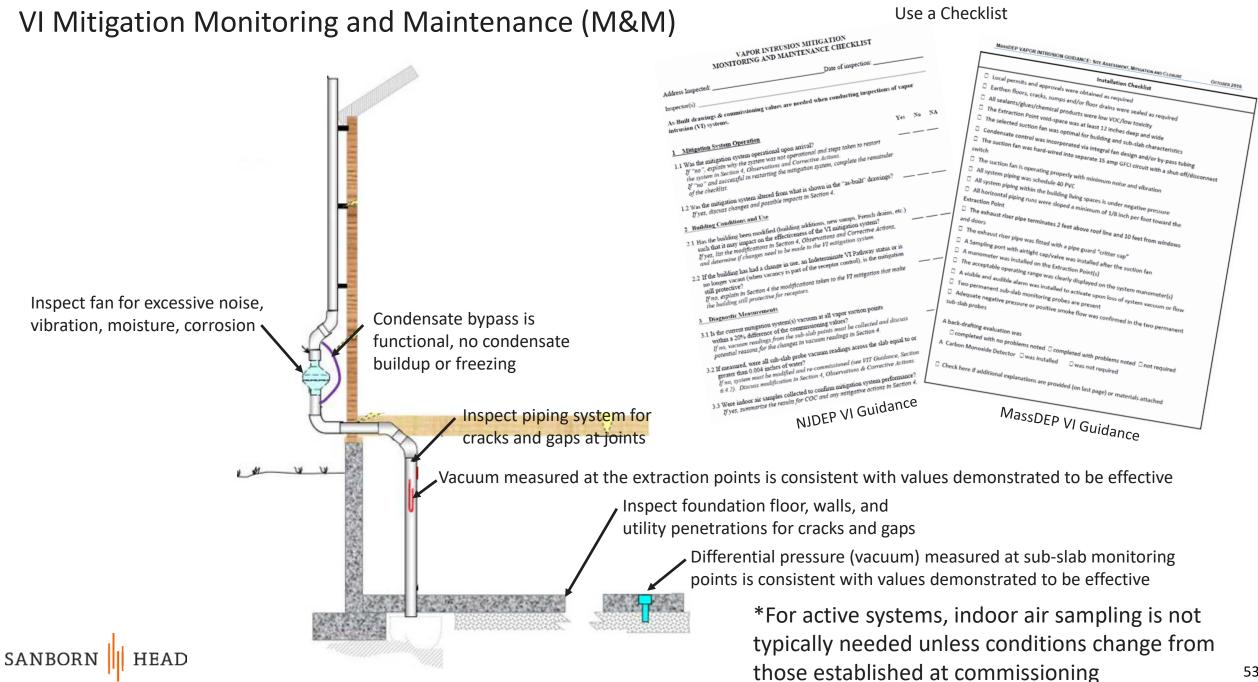

SANBORN

Existing building (from VT VI Guidance)

VI Mitigation for New Residential Construction – Design Guidance

NAVFAC, Fig 1

Key components of VI mitigation for new residential construction:


- Permeable sub-slab support material (e.g. gravel)
- Venting all sub-slab areas below occupied spaces
- Properly sized sub-slab and riser pipes
- A sealed vapor barrier
- Properly sized blower to maintain sufficient vacuum below the slab

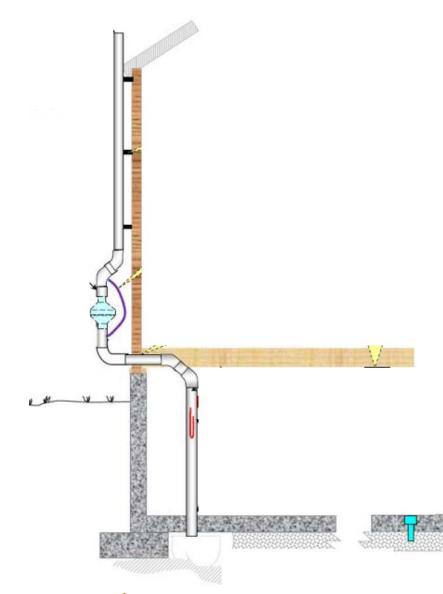
Soil Gas Control Systems in New Construction of Multifamily, School, Commercial and Mixed-Use Buildings

VI Mitigation Monitoring and Maintenance (M&M) - should be conducted at least annually

SANBORN

HEAD

	Active SSDS or SSVS	Passive SSDS or SSVS	
	First year M&M: 1) Semi-annual inspection of system ³ 2) Verify the commissioning values ³ Second year M&M & beyond: 1) Annual inspection of system ³	First year M&M:	
		1) Semi-annual system ³ inspection	
		2) Sampling of IA and SSSG during	
		heating season ¹ following VS sampling	
		Second year and beyond:	
M&M	2) Annual collection of appropriate	 Annual inspection of system³ 	
	system diagnostic measurements and verify consistency ³ with baseline values	2) IA (or void space) sampling during	
		heating season ¹ every year until results are consistently below IARS; THEN	
		 IA sampling during the heating season every 5 years 	


from NJDEP VI Guidance Table 6-1

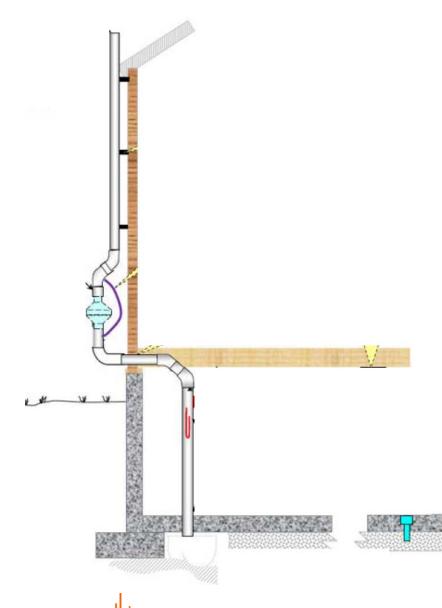
1 - "Heating season" is from November 1 to March 31.

3 - For systems that are larger, and a greater complexity, may require a greater frequency of inspections.

*For active systems, indoor air sampling is not typically needed unless conditions change from those established at commissioning

VI Mitigation Termination Evaluation

SANBORN


HEAD

- 1. Evidence of remediation of subsurface vapor source.
- 2. Shut down VI mitigation system temporarily.
- 3. Conduct attainment period, or rebound, monitoring.

Criteria	Massachusetts	New Jersey	New York
Shutdown period	7 days minimum	30 days minimum	Requires site-specific work plan
Sampling requirements	Indoor air	Indoor air and sub- slab soil gas	Indoor air and sub-slab soil gas
# of sampling events	Three: spaced over 2 years; at least one in heating season, and one other "worst-case" event (high gw table)	Two: spaced at least 4 months apart; one in heating season	Demonstrate no "rebound" effect when system is off for prolonged period – site-specific determination
Other conditions	Run system between sampling events	Run system between sampling events	No rebound when system is off for "prolonged" period

Refer to state VI guidance documents for further details

Closing Points/Summary

SANBORN

VI Assessment

- Develop the conceptual site model establish if and how subsurface vapors might be causing vapor intrusion.
- Consult with the VI guidance in your state.

Use VI Investigation Toolbox

- Traditional sampling methods for soil gas and indoor air
- Real-time monitoring
- Building pressure control
- Long-term passive samples
- Guided samples

VI Mitigation

- Consider need for rapid response actions
- Conduct building survey and diagnostic/design testing for active mitigation
- Use available and recognized design standards and guidance
- Implement regular monitoring and maintenance (M&M) program
- Consider termination criteria when appropriate

Thank you! Questions?