PFAS Annihilator® destruction solution

Lessons Learned from Commercial Deployment in Michigan for AFFF and Landfill Leachate

August 10, 2023

Thank you for having us

David Trueba

President and Chief Executive Officer

dtrueba@revive-environmental.com

Trevor Whitson

Director of Product Portfolio & Marketing

twhitson@revive-environmental.com

Revive Environmental: Snapshot

- Water Technology company created in December 2022
- Structure: Founded by Battelle and Viking Global Investors
- Technology: Global Patents on PFAS Annihilator[®] and GAC Renew[™]
- Headquarters: Columbus, OH / CEO: David Trueba
- <u>https://revive-environmental.com/</u>

Target Markets and Applications

Drinking Water

Soil Remediation

Landfill Leachate

AFFF

What we will cover today...

- PFAS path from Contaminant of Concern to Long-Term Liability
- Development and Comparison of PFAS Destruction technologies
- Overview of Supercritical Water Oxidation (SCWO)
- Lessons Learned using SCWO to destroy AFFF and Landfill Leachate

Timeline: PFAS Regulations + Actions

Not just 'forever' but 'everywhere' chemicals

Source: Presumptive Contamination Sites from PFAS Sites and Community Resources map

Spectrum of Concerning PFAS Contaminants

not a greater quantity by mass, concentration, or frequency of detection.

Source: J. Hale, Kleinfelder. Used with permission.

Proposed MCLs could require 99.9999% removal

Compound	Proposed MCLG	Proposed MCL (enforceable levels)
PFOA	Zero	4.0 parts per trillion (also expressed as ng/L)
PFOS	Zero	4.0 ppt
PFNA		
PFHxS	1.0 (unitless)	1.0 (unitless)
PFBS	Hazard Index	Hazard Index
HFPO-DA (commonly referred to as GenX Chemicals)		

Using PFOA as example...

If source contains <u>3,000 ppb</u> (or 3,000,000 ppt)

Achieving discharge of <u>4 ppt</u> (or 0.004 ppb)

Requires <u>99.9999% removal</u> (4/3,000,000 = 0.0001%)

> Revive environmental

Source: EPA, Proposed PFAS National Primary Drinking Water Regulation <u>https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas</u>

Challenges will differ by application/source

Source: Walnut Valley Water District, https://walnutvalleywater.gov/your-water/your-drinkingwater/water-quality/

Drinking Water

- Very High Volume
- Recurring Continuous
- Low PFAS Concentrations •
- Removal via Media, RO

- Lower Volume
- One-Time Remediation
- Very High PFAS Concentrations
- Concentrate vs Rinsewater vs Contaminated Groundwater/Soil

Treatment of Soil vs Rinsate

- High Volume
- Recurring Continuous
- Differing PFAS Concentrations
- High amount of co-contaminants

Customers have shared...

Health + Toxicity concerns are growing – more PFAS analytes

Sources and areas for treatment increasing in number and complexity

Need flexibility in deployment – onsite + off-site options

CERCLA, RCRA changes may expose Generator of Record to major liability

Need proof of destruction to eliminate liability – eg, batch material balance

PFAS Destruction Technologies

Technology overview – focus on SCWO

PFAS Destruction Technologies

	SCWO (Supercritical Water Oxidation)	HALT (Hydrothermal Alkaline Treatment)	ECO (Electrochemical Oxidation)	Plasma
Readiness	 Commercial, Permitted > 20 years Operational Success 	 Pilot + Designing scaled-up system for testing 	• Pilot	 Design + Initial field pilot
Strengths	 Most comprehensive depth and breadth of PFAS destruction Can handle wide variety of contaminated aqueous matrices Short residence time 	 Very effective on long chain PFAS Lower corrosion vs SCWO given lower temperatures Short residence time 	 Highly mobile unit Low energy consumption for PFAS destruction 	 Highly mobile, low-cost unit Low energy consumption for PFAS destruction Can handle PFAS-containing air streams
Consider- ations	 Susceptible to salt plugging Susceptible to corrosion given high temperatures Readiness being established for solid matrices 	 Susceptible to salt plugging Optimization for short chain PFAS 	 Difficulty handling foam fractionated / concentrated waste streams Effectiveness on short chain PFAS not yet proven Long residence time 	 Limited breadth and depth of PFAS destruction Impacted by water quality Long residence time Potential for air emissions

What is Supercritical Water Oxidation?

• Supercritical water exhibits unique properties

- Gas and liquid phases become indistinguishable
- Density is about 10% of water above the supercritical point
- Water no longer behaves as a polar solvent
- Oxygen is fully soluble
- High temperature in an oxidizing environment overcomes activation energy to break C-F bond

+ H₂O₂ (oxygen source)
+ NaOH (Neutralization)

SCWO: Batch tracking, treatment and annihilation

Influent, Effluent Testing

Regular sampling of all aqueous and vapor streams to ensure full destruction **No Harmful Byproducts** SCWO reaction results in clean water, nominal CO₂, and inert salts (e.g., NaF)

EPA Case Studies on SCWO

Case Study

ASC

Supercritical Water Oxidation as an Innovative Technology for PFAS Destruction

Max J. Krause¹; Eben Thoma²; Endalkachew Sahle-Damesessie³; Brian Crone⁴; Andrew Whitehill5; Erin Shields6; and Brian Gullett

above 374°C and 22.1 MP abecomes supercritical, a special state where organic solubility increases and oxidation process Supercritical water oxidation (SCWO) has been previously shown to destroy hazardous substances such as halogenated rec separate providers of SCWO technology were contracted to test the efficacy of SCWO systems to reduce per- and substances (PFAS) concentrations from solutions of dilute aqueous film-forming foam (AFFF). The findings of all three tudies showed a greater than 99% reduction of the total PFAS identified in a targeted compound analysis, including alfonic acid (PFOS) and perfluorooctanoic acid (PFOA), PFOS was reduced from 26.2 mg/L to 240 µg/L 30.4 mg/ nd 190 mg/L to 8.57 µg/L, from the Aquarden, Battelle, and 374Water demonstrations, respectively. Similarly, PPOA n 930 to 0.14 µg/L, 883 to 0.102 µg/L, and 3,100 µg/L to nondetect in the three evaluations. Additionally, the chemica of the dilute AFFF was shown to reduce from 4,750 to 5.17 mg/L after treatment, indicating significant organic comp ne demonstration, a mass balance of the influent and effluent found that the targeted compounds accounted for only 27% of rectic, suggesting that more PFAS were destroyed than measured and emphasizing the limitations of targeted analysis alone technology, SCWO may be an alternative to incinention and could be a permanent solution for PFAS-laden wastewater osal by injection into a deep well or handfilling. Additional investigation of reaction byproducts remains to be conducted assessment of SCWO's potential as a safe and effective PFAS treatment technology. DOI: 10.1061/(ASCE)EE.1943-2021 Published by American Society of Civil Engineer

rds: Supercritical water oxidation (SCWO); Aqueous film-forming foam (AFFF); Per- and poly-fluoroalkyl substance alfonic acid (PFOS): Fluoride

Engineering Ø ASCE

4°C and 22.1 MPa becomes supercritical, a special with both liquid-like and gas-like properties. Above of water, most organic compounds are soluble niscible, and salts are insoluble (Hodes et al. 2004; 7). In the presence of an oxidizing agent, such as

\$EPA

ntal Protection Agency, Office of Researc

ander Dr. Durham, NC 27709, ORCID

sive species during the oxidation reaction and salts' precipitation or the reactor body, leading to high maintenance and operation cost tical water's unique properties accelerate the me 2013: Mitton et al. 2001). These factors ha ad range of organic pollutants. Since the 1980; trained SCWO's utility to hazardous or otherwise high-In the United States, acueous film-forming form (AFFF) hi mental Protection Agency, Office of Rese n used for over 50 years for certain firefighting applic Martin Luther King Dr. W. Cincinnati, OH 4526 or). ORCID: https://orcid.org/0000-0001-8582-5826

and associated training exercises. The vast majority of AFFF use or stockniked contains fluorosurfactants, which are made and poly-fluoroalky et al. 2017; Place and Field 2012). It is estimated that there millions of liters of AFFF in private, public, and military custo 2011) Many PEAS are stable and resistant to leading to their pervasive presen er in some localit

mercritical water oridation (SCWO) has been used so o treat a variety of hazardous wastes, such as chemical warfa

agents and halogenated compounds (Abeln et al. 2001; Cohe et al. 1998; Kim et al. 2010). Technical challenges have limite

tation of SCWO at scale, including the buildup of cor

	SCWO Case Studies		ADStrac are accel compoun poly-fluo demonstr perfluoro
ne Treatment of Water Matrix	 Case studies performed with four separate SCWO operators Aquarden (Denmark) 374Water (Durham, NC) Battelle (Columbus, OH) General Atomics (San Jose, CA) 	Source: https://aquarden.or	in 0.310 was ratu da tanuti da tanut
The second se	Tested SCWO on dilute AFFF	Prese Payment	phase of the critic oxygen is
	 Analyzed for PFAS, TOF, fluoride, and COD 	Contaminated Annihilated	oxygen, oxidation 'Engin and Devel
	 Some gas-phase PFAS sampled w/General Atomics 	surce:http://www.buitelie.org/government-offengs/energy-environment/environment	(correspond Fimal: kn "Scient and Devel https://orci "Feajin d Devel *Fajin
	 Tested SCWO on dilute AFFF Analyzed for PFAS, TOF, fluoride, and COD Some gas-phase PFAS sampled w/General Atomics . 		a.

€PA

flice of Research and De vironmental Solutions and E ation and Technology Divisi

Industrial SCWO fo

PFAS/AFFF Within

The tests achieved 99.99% destruction and removal efficacies of targeted PFAS and total organic carbon. The tests show that hydrothermal flame as an internal heat source reduces residence time, with minimum corrosion, by controlling the wall temperature and construction materials. SCWO process shows limited partial and incomplete oxidation products that are

entrained in the solution, and no fluorinated compounds were detected in the stack gas emission. The effluent from SCWO is easily collected, analyzed, and can be recycled. Gaseous effluents from SCWO were carbon dioxide and oxygen with traces of carbon monoxide and trace quantities of hydrothermal heat source oxidized products. The hydrogen fluoride formed within the reactor was neutralized, precipitated from the SCWO reactor water solution, and removed from the SCWO reaction vessel. The study provided additional data on the effectiveness of SCWO as an alternative technology for treating high PFAS-concentrated aqueous waste.

Destroys PFAS Regardless of Chain Length or Functional Groups

Effectively Treats a Range of PFAS-Impacted Media

		ΣPFAS (μg/L)		
Feed Type	TOC (mg/L)	Pre- Destruction	Post- Destruction	% Removal
Investigation Derived Waste	62.1	960	0.027	>99.9
AFFF – Legacy PFOS (Lightwater)	23,900	2,150,000	0.667	>99.9
AFFF – Legacy Fluorotelomer	26,500	13.3	0.171	>99.9
AFFF Modern Fluorotelomer	126,000	13.6	3.08	>99.9
Landfill Leachate	804	41.0	0.0135	99.9
GAC Regenerant (alcohol-based)	NA	23.9	0.0157	99.9
Soil Wash Rinsate	582	0.709	0.0422	92.8
Reverse Osmosis Concentrate	15.8	14.7	0.0578	99.6
Surface Activated Foam Fractionate	11.9	16,644	31.1	99.8

PFAS Annihilator[®] is being used for PFAS-impacted media directly and in combination with non-destructive treatment technologies

PFAS Annihilator® Systems Operational Today

Bench/Lab Unit

- 2019 to present
- ~2 to 6 gallons per test
- Technology development
- Validate destruction of field samples
- Prepare for field deployment
 - Characterization
 - Optimization

Pilot Mobile Unit

- Jan 2020 to present
- 30 to 50 gpd
- Longer-term operation than bench-scale
- Technology development (longerduration tests, salt removal)
- Field demonstrations/validation

Commercial Mobile Units

- March 2023 to present
- 300 to 500 gpd
- Continuous operation
- Fully permitted for operations today
- Field demonstrations
- Destruction of stockpiled waste
- Six additional units will be in service in 2023

Lessons Learned

SCWO destruction of AFFF, Leachate

Commercial Operations in Wyoming, MI

Permit Establishment: EGLE and City of Wyoming, MI

- Regulatory Review: Paper, Physical Audit, Ongoing Monitoring/Transparency
- Permitting Result: Permit by Exemption for Air, Water

Commercial Operations: March '23 commissioning, May '23 operation

- Receiving 85K-150K gallons per day of raw leachate from 3 landfills, then running through Foam Fractionation with resulting concentrate destroyed via SCWO
- Additionally processing concentrated streams from other sources and applications

- Foam Fractionation concentrates
 - (1,000x, 10,000x)Reverse Osmosis reject

- Concentrate stockpiles
- Rinse/Cleanout waters
- Contaminated groundwater

- Investigation Derived Waste (IDW)
 - Contaminated groundwater
 - Soil wash water

• GAC Renew[™] rinse water

Energy Usage for Startup vs Operation depends on organic content of waste stream – higher content increases energy generation and reduces electrical requirements

Leachate: Regulatory Compliance

EFFLUENT ANALYSIS	PFOA (3,200 ng/L) Limit	PFBS (12 ng/L) Limit	PFOS (12 ng/L) Limit
SAMPLE 1	4.58 ng/L	0.65 ng/L	4.01 ng/L
SAMPLE 2	5.70 ng/L	0.70 ng/L	6.98 ng/L
SAMPLE 3	2.09 ng/L	0.71 ng/L	2.09 ng/L
SAMPLE 4	1.14 ng/L	0.70 ng/L	0.98 ng/L
SAMPLE 5	1.16 ng/L	0.71 ng/L	0.99 ng/L
SAMPLE 6	1.07 ng/L	0.65 ng/L	0.91 ng/L

AFFF: Field-Scale Destruction

AFFF Type	Foam Concentration (%)	Avg. PFAS Concentration (ng/L)	Total PFAS Removal (%)
Buckeye AR	6	93,931	99.91
Buckeye AR	6	5,121,619	99.99
Buckeye AR	6	5,308,470	99.99
Buckeye AR	6	10,955,951	99.99
Buckeye AR	8	13,857,691	99.99
Buckeye AR	10	5,309,200	99.98
Buckeye AR	12	8,362,470	99.96
Buckeye AR	14	9,081,876	99.99
Buckeye AR	16	19,675,497	99.99
Thunderstorm AR	12	1,235,186	99.40
Thunderstorm AR	12	1,534,273	99.79
Universal Gold AR	12	55,245,305	99.99

Lessons Learned from Scaling Technology...

Lead with Safety

Coordination critical
 with onsite partners

Regulatory Transparency

Water discharge limits

Physical audit

Ongoing sampling

Pre-deployment coordination

• Safe handling / Chain of custody

Quality Processes / Scale

- Batch tracking
- Local regulations compliance
- 500 GPD operational capability

Infrastructure

- People
- Supply Chain / Manufacturing
- Analytical Support Ecosystem

۲

•

.

What we covered today...

- PFAS path from Contaminant of Concern to Long-Term Liability
- Development and Comparison of PFAS Destruction technologies
- Overview of Supercritical Water Oxidation (SCWO)
- Lessons Learned using SCWO to destroy AFFF and Landfill Leachate

(833) END-PFAS • www.revive-environmental.com