

QA/QC Basics & Understanding Your Lab Report

Elizabeth Denly, TRC, Vice President, PFAS Initiative Leader & Chemistry Director

Today's Training Topics

- Communicating with the Analytical Laboratory
- Evaluating the Analytical Data

What Questions Do I Need to Answer While Preparing The Lab Scope of Work?

Why Am I Collecting This Sample?

- Is it a permit requirement?
- Is it for waste characterization?
- Will a human health or ecological risk assessment be performed?
- Are you evaluating nature & extent of contamination?
- Are you measuring effectiveness of a remediation system?

IS MY PURPOSE?

What Analytes are Needed?

- VOCs, SVOCs, Pesticides, Metals
 - What is the lab's full list? Every lab is different.
 - Should the lab report the entire list?
- Waste Characterization Parameters
 - TCLP VOCs, TCLP SVOCs, TCLP metals, TCLP pesticides, TCLP herbicides, ignitability, reactivity, corrosivity
- NPDES Permit Parameters
- Remediation or Investigation Parameters
- Air Emission Standard Permit

METHOD 8260D VOLATILE ORGANIC COMPOUNDS BY GAS CHROMATOGRAPHY/MASS SPECTROMETRY

- ·		Compound	CAS No.4	Hexachlorobutadiene	87-68-3
Compound	CAS No. ^a		110-75-8	Hexachloroethane	67-72-1
Acetone	67-64-1	 2-Chloroethyl vinyl ether 	67-66-3	2-Hexanone	591-78-
Acetonitrile	75-05-8	Chloroform 1-Chlorohexane	544-10-5	Iodomethane (Methyl iodide)	74-88-4
Acrolein (Propenal)	107-02-8	Chloromethane	74-87-3	Isobutyl alcohol	78-83-1
Acrylonitrile	107-13-1	Chloroprene (2-Chloro-1,3-		Isopropylbenzene	98-82-8
Allyl alcohol	107-18-6	butadiene)	126-99-8	p-Isopropyltoluene	99-87-6
Allvl chloride	107-05-1	2-Chlorotoluene	95-49-8	Malononitrile	109-77-
· · · · · · · · · · · · · · · · · · ·	101-03-1	4-Chlorotoluene	106-43-4	Methacrylonitrile	126-98-
t-Amyl ethyl ether (TAEE, 4,4- Dimethyl-3-oxahexane)	919-94-8	Crotonaldehyde	4170-30-3	Methanol	67-56-1
· · ·		Cyclohexane	110-82-7	Methyl acetate	79-20-9
t-Amyl methyl ether (TAME)	994-05-8	1,2-Dibromo-3-chloropropane	96-12-8	Methyl acrylate	96-33-3
Benzene	71-43-2	(DBCP)	30-12-0	Methyl methacrylate	80-62-6
Benzyl chloride	100-44-7	1,2-Dibromoethane (EDB,	106-93-4	Methyl tert-butyl ether (MTBE) Methylcyclohexane	1634-04 108-87-
Bromoacetone	598-31-2	Ethylene dibromide) Dibromomethane	74-95-3	Methylene chloride (DCM)	75-09-2
Bromobenzene	108-86-1	1,2-Dichlorobenzene	95-50-1	4-Methyl-2-pentanone (MIBK)	108-10-
Bromochloromethane	74-97-5	1,3-Dichlorobenzene	541-73-1	Naphthalene	91-20-3
Bromodichloromethane	75-27-4	1.4-Dichlorobenzene	106-46-7	Nitrobenzene (NB)	98-95-3
Bromoform	75-25-2	cis-1,4-Dichloro-2-butene	1476-11-	2-Nitropropane	79-46-9
Bromomethane	74-83-9	trans-1.4-Dichloro-2-butene	110-57-6	N-Nitroso-di-n-butylamine (N-	
n-Butanol (1-Butanol, n-Butyl	74.00.0	Dichlorodifluoromethane	75-71-8	Nitrosodibutylamine)	924-16-
alcohol)	71-36-3	1,1-Dichloroethane	75-34-3	Paraldehyde	123-63-
2-Butanone (MEK)	78-93-3	1,2-Dichloroethane	107-06-2	Pentachloroethane	76-01-7
t-Butyl alcohol	75-65-0	1,1-Dichloroethene (Vinylidene	75.25.4	Pentafluorobenzene	363-72-
<i>n</i> -Butylbenzene	104-51-8	chloride)	75-35-4	2-Pentanone	107-87-
sec-Butylbenzene	135-98-8	cis-1,2-Dichloroethene	156-59-2	2-Picoline (2-Methylpyridine)	109-06-
tert-Butylbenzene	98-06-6	trans-1,2-Dichloroethene	156-60-5	1-Propanol (n-Propyl alcohol)	71-23-8
Carbon disulfide	75-15-0	1,3-Dichloropropane	142-28-9	2-Propanol (Isopropyl alcohol)	67-63-0
Carbon tetrachloride	56-23-5	1,2-Dichloropropane	78-87-5	Propargyl alcohol	107-19-
	302-17-0	2,2-Dichloropropane	594-20-7	β-Propiolactone	57-57-8 107-12-
Chloral hydrate		1,3-Dichloro-2-propanol	96-23-1	Propionitrile (Ethyl cyanide)	107-12-
Chlorobenzene 1-Chlorobutane	108-90-7	1,1-Dichloropropene	563-58-6	n-Propylamine n-Propylbenzene	107-10-
	109-69-3	cis-1,3-Dichloropropene trans-1,3-Dichloropropene	10061-01- 10061-02-	Pyridine	110-86-
Chlorodibromomethane	124-48-1	1,2,3,4-Diepoxybutane	1464-53-	Styrene	100-42-
(Dibromochloromethane) Chloroethane	75-00-3	Diethyl ether	60-29-7	1,1,1,2-Tetrachloroethane	630-20-
		Diisopropyl ether (DIPE)	108-20-3	1,1,2,2-Tetrachloroethane	79-34-5
2-Chloroethanol	107-07-3	1.4-Dioxane	123-91-1	Tetrachloroethene	127-18-
		Epichlorohydrin	106-89-8	Toluene	108-88-
Compound	CAS No. ^a	Ethanol	64-17-5	o-Toluidine	95-53-4
		Ethyl acetate	141-78-6	1,2,3-Trichlorobenzene	87-61-6
1,1,2-Trichloroethane	79-00-5	Ethyl benzene	100-41-4	1,2,4-Trichlorobenzene	120-82-
Trichloroethene	79-01-6	Ethyl methacrylate	97-63-2	1,1,1-Trichloroethane	71-55-6
(Trichloroethylene)		Ethyl t-butyl ether (ETBE)	637-92-3		
1,1,2-Trichloro	76-13-1	Ethylene oxide	75-21-8		
trifluoroethane		-			
1,1,1-Trichlorotrifluoroethane	354-58-5				
Trichlorofluoromethane	75-69-4				
1,2,3-Trichloropropane	96-18-4				
1,2,3-Trimethylbenzene	526-73-8				
1,2,4-Trimethylbenzene	95-63-6				
1,3,5-Trimethylbenzene	108-67-8				
Vinyl acetate	108-05-4				
Vinyl chloride	75-01-4				
<i>m</i> -Xylene	108-38-3				
o-Xylene	95-47-6			_	
<i>p</i> -Xylene	106-42-3			5	

What Detection Limits are Needed?

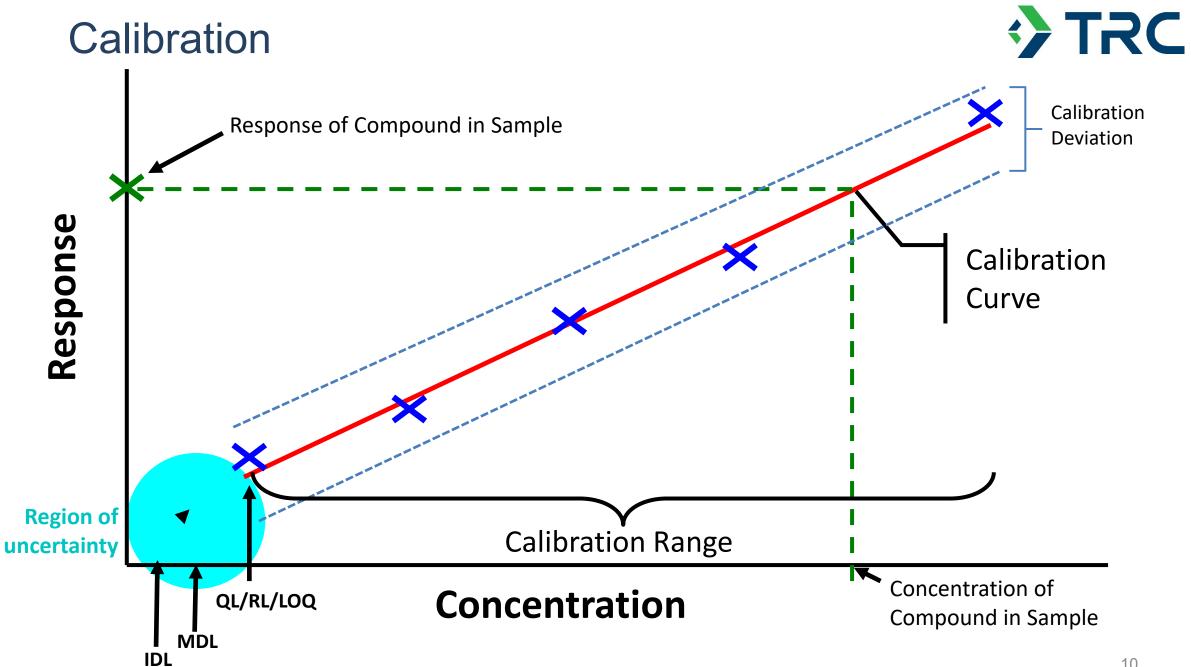
- What regulatory or screening criteria needs to be achieved?
- Are the lab's reporting limits below the regulatory or screening criteria?
- Do I need to request special methods to achieve the regulatory or screening criteria?

Soil Samples (mg/kg)								
Analyte	Sample RL (method)	EPA RSL/Residential	EPA RSL/Industrial					
Benzo(a)pyrene	0.33 (8270) 0.033 (8270 SIM)	0.11	2.1					
Arsenic	1.0 (6010) 0.1 (6020)	0.68	3.0					
RSL = Regional Screening Level SIM = Selective Ion Monitoring								

If Reporting Limits (RLs) above screening criteria, may not be able to achieve objectives.

Detection Limits

Detection Limit Terminology



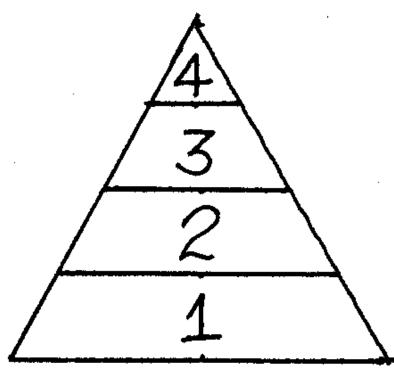
Acronym	Definition
IDL	Instrument Detection Limit
EDL	Estimated Detection Limit
DL	Detection Limit
MDL	Method Detection Limit
LOD	Limit of Detection
PQL	Practical Quantitation Limit
RL	Reporting Limit
QL	Quantitation Limit
SQL	Sample Quantitation Limit
LOQ	Limit of Quantitation
LLOQ	Lower Limit of Quantitation

Different Detection Limits

Detection Limit	Accurate?	Precise?	Use to Demonstrate Below Cleanup Standards?	Use Values in Risk Assessment?
IDL	Νο	Yes	Νο	Νο
EDL ¹	Νο	Yes	Yes	Yes
MDL / DL	Νο	Yes	Νο	Νο
LOD ²	Νο	Yes	Yes	Yes
PQL	Yes	Yes	Νο	Νο
RL / QL / SQL / LOQ/LLOQ	Yes	Yes	Yes	Yes
¹ Specific to dioxins/furans ² Specific to DoD projects				9

What Type of Laboratory Deliverable do I Need?

- Level 1, Level 2, Level 3, or Level 4 data package?
- Level 1: Sample results only: NEVER Request this.
- Level 2: Sample results, QC sample results, laboratory narrative
- Level 3: Level 2 plus calibration results

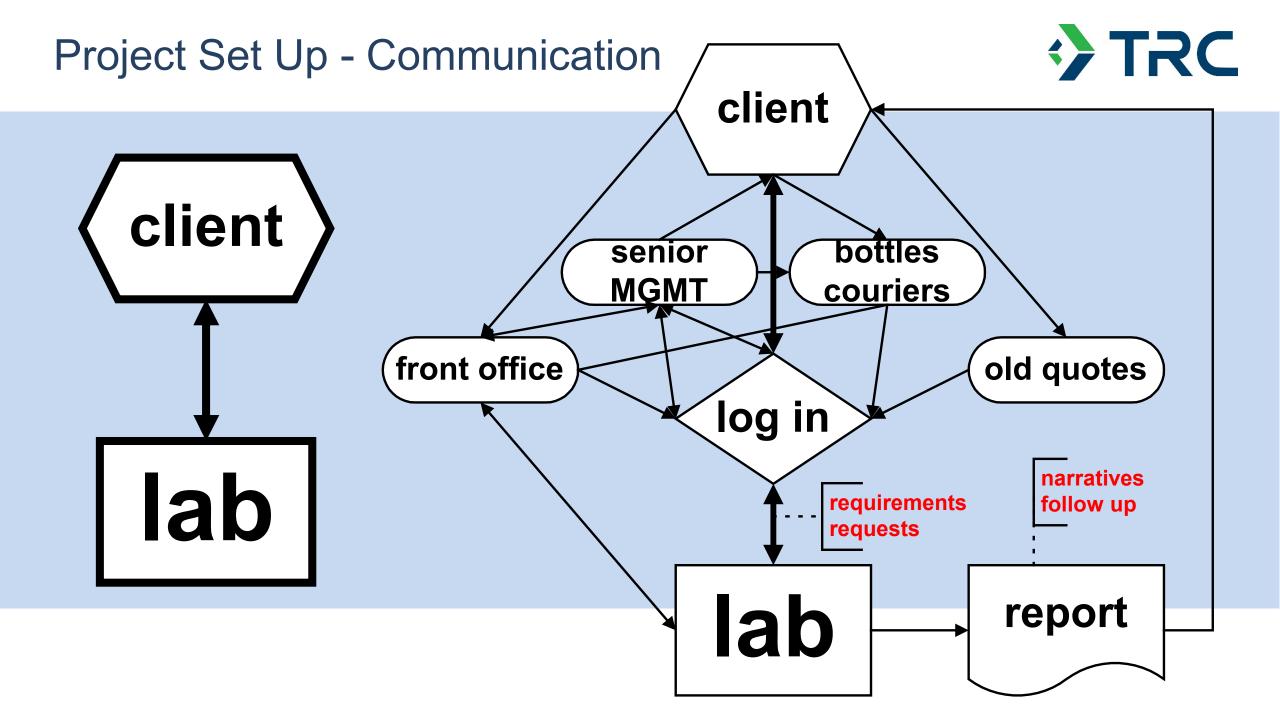

HOW MUCH DATA

REALLY NEED?

• Level 4: Level 3 plus all associated raw data

• Level 3 or 4: consider for critical decision-making (risk assessment, remediation effectiveness, potential litigation)

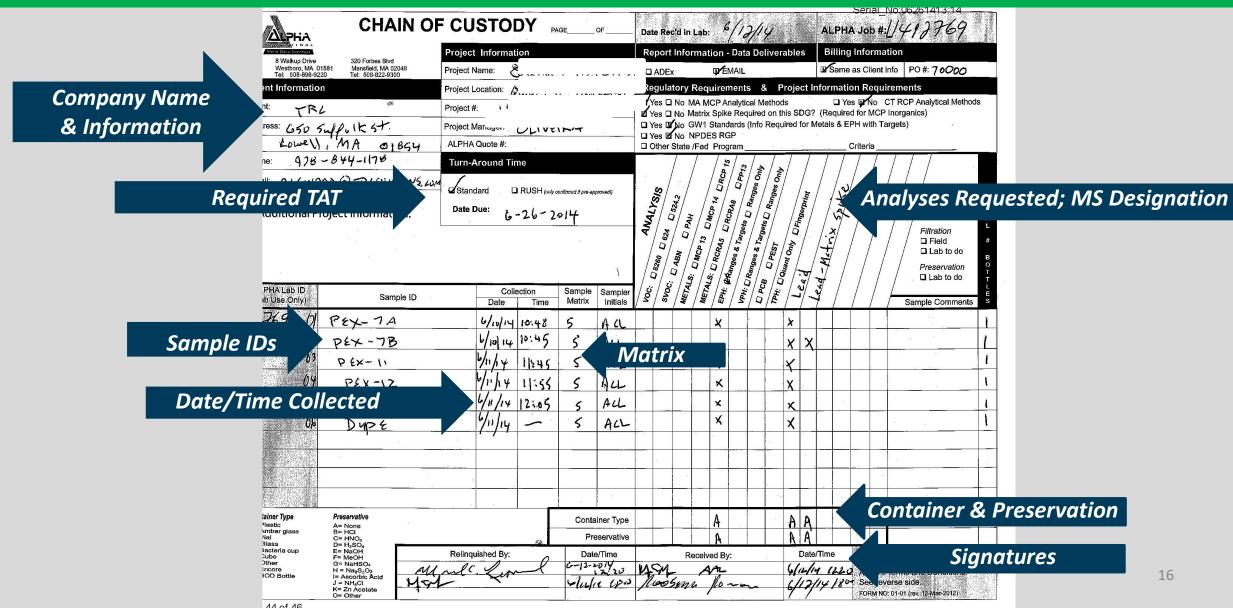
TRC


Field Quality Control: What are the Options?

QC Sample	Why Should I Collect?	How Often Should I Collect?
Trip Blank	To evaluate VOC contamination during shipment of samples	1 per every cooler containing samples for VOCs
Field Blank	To evaluate presence of contaminants in ambient air at the site	1 per day per parameter
Equipment Blank	To evaluate presence of contaminants on equipment after decontamination	1 per day per matrix and parameter
Field Duplicate	To evaluate sampling and analytical precision	1 per 20 samples per matrix and parameter
Matrix spikes/matrix spike duplicates (MS/MSDs)	To evaluate matrix-specific bias	1 per 20 samples per matrix and parameter
Cooler Temperature Blank	To ensure proper preservation of samples maintained during shipment	1 per each cooler

Communicating With the Laboratory

What Do We Need to Discuss With the Lab Before Samples Arrive? • TRC


- State/federal agency involved; ensure lab has required certifications
- No. of samples for each matrix, including QC samples
- Analyses required for each matrix
 - Analyte lists
 - Special analytical needs (e.g., SIM)?
- Project screening criteria
 - Lab's RLs below criteria?
- Which detection limits should be used?
 - MDLs, RLs, LODs?
- Sampling schedule
 - Courier pickups?
 - Any short holding times?
 - How will samples be delivered?
 - Hazardous materials shipping?

- Turnaround Time (TAT) and required deliverables
 - Hardcopy and electronic data deliverable (EDD)
 - Surcharges for quick TAT
 - Any analyses that cannot be done rush
- Special reporting requirements
 - Soils on dry weight basis
 - "J" values needed?
- Unusual sample or project-specific info
- Bottles and preservatives needed for each matrix and parameter
- Pre-printed sample labels or COCs possible?
- Quality Assurance Project Plan (QAPP)/Sampling & Analysis Plan (SAP)
- Canister sampling: Batch or individual certification needed?

Sample Traceability/Chain-of-Custody

Were COC forms Appropriately Completed?

Communication After Samples are Received by the Lab

- Make sure lab sends sample receipt confirmations
 - Did lab transcribe sample IDs properly?
 - Did lab log in samples for the correct analyses?
 - Were there any issues with samples (e.g., broken bottles)?

Login Number: 51372 List Number: 1 Creator: Nelson, Kym D		List	Source: Eurofins
Question	Answer	Co	mment
Radioactivity wasn't checked or is = background as measured by a survey<br meter.	True		
The cooler's custody seal, if present, is intact.	True	658	3535
Sample custody seals, if present, are intact.	N/A		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	False		iter present in coo Ited ice.
Cooler Temperature is acceptable.	False		
Cooler Temperature is recorded.	True		
COC is present.	True	20	
COC is filled out in ink and legible.	True		1-1-220 542
COC is filled out with all pertinent information.	N/A		Job 320-513
is the Field Sampler's name present on COC?	N/A		Client Job Des
here are no discrepancies between the containers received and the COC.	True		Purchase Orde
Samples are received within Holding Time (excluding tests with immediate HTs)	True	- 1	Work Order #: Project Manag
Sample containers have legible labels.	True		Job Due Date:
Containers are not broken or leaking.	True		Job TAT:
Sample collection date/times are provided.	True		Max Deliverabl
Appropriate sample containers are used.	True	- 1	
Sample bottles are completely filled.	True		Earliest Delive
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		Login 320-5
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		Sample Receip Method of Deli
Multiphasic samples are not present.	True		1.1.0
Samples do not require splitting or compositing.	True	- 1	Lab Sample #
Residual Chlorine Checked.	N/A		Method 320-51372-1

Login Sample Receipt Checklist

Job Number: 320-51372-1

Source: Eurofins Test	Americ	a, Sacramento							
nment									
535									
er present in cooler; in ted ice.	dicates	evidence of							
			Sample Log	jin Acknow	/ledge	men	nt		05/05/10 rev 2.0
Job 320-51372-1									
Client Job Descripti	on:	Confidential PP			Report T	o: T	RC Environmenta	al Corporation	
Purchase Order #:		344091					rianne Francese		
Work Order #:						14	430 Broadway, 10	Oth FL	
Project Manager:		David R Alltucker				N	ew York, NY 100	18-3308	
Job Due Date:		7/9/2019							
Job TAT:		15 Days							
Max Deliverable Lev	el:	IV			Bill To:	T	RC Environmenta	al Corporation	
						В	rianne Francese		
Earliest Deliverable	Due:	7/9/2019					430 Broadway, 10 ew York, NY 100		
Login 320-51372	2								
Sample Receipt:		6/17/2019 10:00:00	D AM	Number of Co	olers:	1			
Method of Delivery:		FedEx Priority Over	rnight	Cooler Tempe	erature(s)	(C°): 22	2.0;		
Lab Sample #	Client	Sample ID		Date Sampled		Matrix			
Method	M	ethod Description /	Work Location				Rpt Basis	Dry / Wet **	
320-51372-1	S.I Pa	aper		6/13/2019 9:20	:00 AM	Solid			
PFC_IDA	P	FAS, Extended List (2	24 Analytes+GenX, F	-53B, DONA) / In-	Lab		Total	Wet	
SUBCONTRAC		FAS - N-EtFOSE - le aboratories Env LLC	vel IV raw data packa	age / Eurofins Lan	caster		Total	Wet	
320-51372-2	\$.I W	ater		6/13/2019 9:25	:00 AM	Water			
PFC_IDA	P	FAS, Extended List (2	24 Analytes+GenX, F	-53B, DONA) / In-	Lab		Total	Wet	
SUBCONTRAC			vel IV raw data packa	age / Eurofins Lan	caster		Total	Wet	
320-51372-3	S.I Ef	aboratories Env LLC		6/13/2019 9:45	-00 AM	Water			
PFC_IDA			24 Analytes+GenX, F			mater	Total	Wet	
SUBCONTRAC	T P		vel IV raw data packa				Total	Wet	
320-51372-4	S.I SI			6/13/2019 10:3	0:00 AM	Solid			
Moisture	P	ercent Moisture / In-L	ab				Total	Wet	
PFC_IDA	P	FAS, Extended List (2	24 Analytes+GenX, F	-53B, DONA) / In-	Lab		Total	Dry	
SUBCONTRAC		FAS - N-EtFOSE - le aboratories Env LLC	vel IV raw data packa	age / Eurofins Lan	caster		Total	Wet	
320-51372-5	\$.I D			6/13/2019 12:0	0:00 AM	Water			
PFC_IDA	P	FAS, Extended List (2	24 Analytes+GenX, F	-53B, DONA) / In-	Lab		Total	Wet	
SUBCONTRAC		FAS - N-EtFOSE - le aboratories Env LLC	vel IV raw data packa	age / Eurofins Lan	caster		Total	Wet	

TRC

Evaluation of Analytical Data

Why Do We Need to Evaluate the Lab's Data?

- Data may be used to make costly decisions
- Data may have potential to impact human health
- Need to confirm quality data available and appropriate to support decisions
- Need to determine potential low or high biases, potential uncertainties, potential false positive or false negative results

Even if the lab follows all method-required procedures, there can still be data quality/usability issues.

Effective Post-Sampling Laboratory Communications

- Read the Report / Review the Data
 - As soon as you get it!
- Why?
 - Information is extremely time-sensitive –
 Anything requiring the laboratory to re-analyze samples dependent on hold time
 - The longer you wait, the shorter the memories become, both in the lab and with the field personnel that collected the samples
 - The longer you wait, the longer it takes a laboratory to produce requested documentation

- □ Right list of analytes?
- □ All samples analyzed?
- Required reporting limits achieved?
- □ Were "J" values reported?
- Does anything look unusual?

Data Completeness

Results for all requested analytical parameters?

Results reported for all samples submitted?

Requested analytical methods used?

Results for requested target analytes?

Soil/sediment results reported on dry weight basis?

Were "J" values reported/requested? (gas chromatography/mass spectrometry [GC/MS], Inductively coupled plasma[ICP]/MS)

Did we receive the required deliverables?

Check vs. COC, QAPP

Check vs. COC

Check vs. COC, scope of work, QAPP, etc.

Check vs. scope of work or QAPP, etc.

Check vs. scope of work or QAPP, etc.

Evaluation Categories

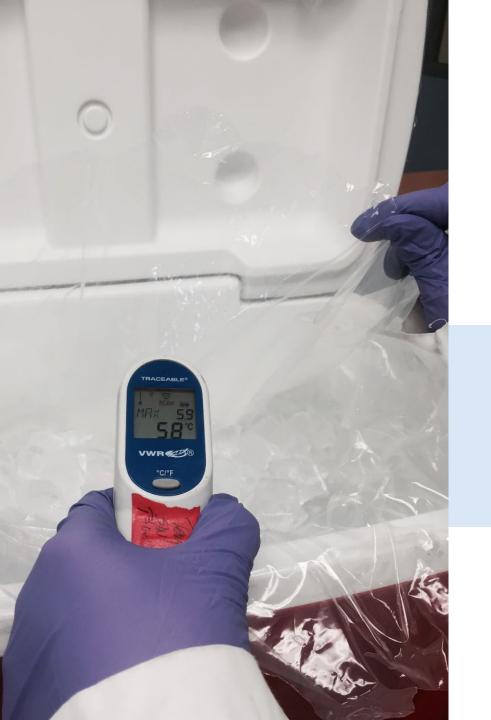
Laboratory Performance
 Field Performance

Matrix Interferences

Laboratory Performance	Field Performance	Matrix Interferences				
Method Blanks	Field Blanks	Surrogates				
Lab Control Samples	Sample Preservation	Internal Standards*				
Holding Times	Field Duplicates	Matrix Spikes				
Calibrations*		Laboratory Duplicates				
Tunes*						

*Not typically included in Level 2 deliverables

What is Affected by Each Parameter?


Sample-Specific	Batch-Specific
Holding Time	Method Blanks
Sample Preservation	Lab Control Samples
Field Duplicates	Calibrations*
Surrogates	Tunes*
Internal Standards*	Field Blanks
Matrix Spikes	
Laboratory Duplicates	
*Not typically included	t in Loval 2 dalivarables

*Not typically included in Level 2 deliverables

Organic Versus Inorganic Methods: *Examples*

Organic	Inorganic
Volatile Organic Compounds (VOCs)	Metals
Semivolatile Organic Compounds (SVOCs) Polycyclic Aromatic Hydrocarbons (PAHs)	Cyanide
Pesticides	Hexavalent Chromium
Polychlorinated Biphenyls (PCBs)	Anions
Dioxins/Furans	Hardness
Total Petroleum Hydrocarbons (TPH) Extractable Petroleum Hydrocarbons (EPH) Volatile Petroleum Hydrocarbons (VPH)	
Per- and Polyfluoroalkyl Substances (PFAS)	24

Sample Preservation & Integrity Was the Cooler Temperature $\leq 6^{\circ}$ C?

Typically noted on COC or separate cooler receipt form.

What if samples are delivered to the laboratory on the same day of collection and temperatures are outside of the acceptance criteria but samples are on ice?

Temperature too low: likely okay as long as waters not frozen Temperature too high: use professional judgment

- Metals
- PCBs or Dioxins
- VOCs (potential low bias)

Sample Preservation & Integrity

Was the Proper Chemical Preservative Used?

- Chemical Preservation of Aqueous Samples (examples)
 - Metals (nitric acid; pH <2)</p>
 - VOCs (hydrochloric acid; pH <2)
 - TOC (sulfuric acid; pH <2)</p>
 - Cyanide (sodium hydroxide; pH >12)
- Chemical Preservation of Soil/Sediment Samples
 - Most common: VOCs
 - Low-level: 5 grams with sodium bisulfate/DI water and magnetic stir bar
 - Low-level: 5 grams with DI water and magnetic stir bar
 - High-level: 5 grams with methanol

issue.

Most labs will note on cooler receipt form or in narrative IF there is an

Option to chemical preservation is EnCore[™] samplers.

Potential Issues with Lack of Preservation

Water VOCs not acid-preserved	Holding time reduced to 7 days
Water: other parameters not properly preserved	If >1 day to preservation, may have low bias
Soil VOCs not preserved	Detected results low bias Nondetect results rejected

Significant Data Quality Issue: Lack of Preservation for Soil Samples for VOCs

Sample Preservation & Integrity Air Samples

- Canister Vacuums
- Flow Controller Calibrations

Flow controller relative percent differences (RPDs) should be <20.

Want canister vacuum to be between 5-10" Hg; don't want it to be 0.

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure n Receipt h. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPI
L1414095-01	5ALL8-1	0383	#20 AMB	06/23/14	104424		-			Pass	3.3	3.4	3
L1414095-01	SALLB-1	999	6.0L Can	06/23/14	104424	L1413371-04	Pass	-29.2	-6.0	-	-		
L1414095-02	6ALLB-2	0256	#16 SV	06/23/14	104424		-	-	-	Pass	3.1	3.2	3
L1414095-02	5ALLB-2	969	6.0L Can	06/23/14	104424	L1413442-02	Pass	-29.6	-8.0	-	-		-
L1414095-03	9ALLB-1	0201	#16 AMB	06/23/14	104424		-	-	-	Pass	3.2	3.4	6
L1414095-03	9ALLB-1	1526	6.0L Can	06/23/14	104424	L1413371-03	Pass	-29.5	-7.4		-		
L1414095-04	9ALLB-2	0201	#16 AMB	06/23/14	104424		-	-	-	Pass	з.		
L1414095-04	9ALLB-2	639	6.0L Can	06/23/14	104424	L1411852-01	Pass	-29.1	-4.6	-			
L1414095-05	252-1	0240	#16 AMB	06/23/14	104424		-	-	-	Pass	3.0	0.4	153
L1414095-05	252-1	1799	6.0L Can	06/23/14	104424	L1413293-01	Pass	-29.3	-22.1				29

Sample Preservation & Integrity Were Preparation & Analytical Holding Times Met?

- Need to check for <u>every</u> sample and <u>every</u> analysis
- Make sure lab provides both PREPARATION and ANALYSIS dates, when applicable.

Holding Times for Some Common Analyses

	Holding Times and Preservation Requirements									
Parameter	Reference	Acceptance Criteria								
	Method	Aqueous	Solid							
VOCs	EPA 8260B	14 days (pH <2 with HCl)	Low-level in 5 mL water: 48 hours to storage in freezer; 14 days to analysis							
		7 days (un-preserved)	Low-level in 5 mL NaHSO4: 14 days to analysis							
			High-level in methanol: 14 days to analysis							
			EnCore samplers: 48 hours to preservation for low-level and high-level analyses; above holding times for analysis apply							
SVOCs	EP A 827 0D	7 days to extraction; 40 days from extraction to analysis	14 days to extraction; 40 days from extraction to analysis							
Metals	EPA 6010C	6 months to analysis (pH <2 with HNO ₃)	6 months to analysis							
(ICP-AES)										
Mercury	EPA 7470A, EPA 7471B	28 days to analysis (pH <2 with HNO ₃)	28 days to analysis							
Metals	EPA 7010	6 months to analysis (pH <2 with HNO ₃)	6 months to analysis							
(GFAA)										
Metals	EPA 6020A	6 months to analysis (pH <2 with HNO ₃)	6 months to analysis							
(ICP-MS)										
ТРН	EPA 8015B GRO: 14 days to analysis (pH <2 with HCl)		GRO: 14 days to analysis (methanol)							
		DRO: 7 days to extraction; 40 days from extraction to analysis	DRO: 14 days to extraction; 40 days from extraction to analysis							
PCBs	EPA 8082A	1 year to extraction; 40 days from extraction to analysis	1 year to extraction; 40 days from extraction to analysis							
Pesticides	EPA 8081B	7 days to extraction; 40 days from extraction to analysis	14 days to extraction; 40 days from extraction to analysis							
Herbicides	EPA 8151A	7 days to extraction; 28 days to methylation; analysis immediately after methylation	14 days to extraction; 28 days to methylation; analysis immediately after methylation							

Collected

6/11/23

The Lab provides **dates prepared** and **dates analyzed**. The **collection** dates are on the COC.

Therefore, YOU can calculate whether holding times were met.

- 5 days lapse
- (HT = 14 days from collection)

• (HT = 40 days from extraction)

If Holding time missed: *Data potentially biased low* If Holding time missed by >2x holding time: *Data may not be usable for project objectives*

Analyzed

6/23/23

Evaluate Holding Times

VOCs: 14 days to analysis

SVOCs: 14 days to extraction; 40 days from extraction to analysis

Typical sample result summary form

- Number of VOCs reported
- Results, RLs, units
- Dilution results
- Collection date, prepared date, analysis date
- Percent solids (dry weight)
- Surrogate
 recoveries

Client Sample ID: -SS-01-TOP Date Collected: 01/29/20 09:50 Date Received: 01/30/20 09:30 Method: 8260C - Volatile Organic Compounds by GC/MS					VOCs in soil		Lab Sample ID: XX XXX-1 atrix: S Percer Solids:			
	Analyte		Qualifier R	L MDL	Unit	D	Prepared	Analy	zed	Dil Fac
	1,1,1-Trichloroethane	ND	5.7	5	ug/Kg	¢.	01/30/20 13:45	01/31/20	12:23	1
	1,2-Dichlorobenzene	ND	5.7	5	ug/Kg	¢	01/30/20 13:45	01/31/20	12:23	1
	1,1,2,2-Tetrachloroethane	ND	5.7	5	ug/Kg	¢	01/30/20 13:45	01/31/20	12:23	1
	1,1,2-Trichloroethane	ND	5.7	5	ug/Kg	¢	01/30/20 13:45	01/31/20	12:23	1

Date Collected: 01/29/20 09:5 Date Received: 01/30/20 09:3	SVOCs in soil								
Method: 8270D - Semivolatil Analyte		npounds (_{Qualifier}	GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		2120		ug/Kg	- 5	01/31/20 14:48		10
bis (2-chloroisopropyl) ether	ND		2120		ug/Kg	¢	01/31/20 14:48	02/03/20 21:31	10
2,4,5-Trichlorophenol	ND		2120	574	ug/Kg	¢	01/31/20 14:48	02/03/20 21:31	10
2,4,6-Trichlorophenol	ND		2120	424	ug/Kg	٥	01/31/20 14:48	02/03/20 21:31	10
2,4-Dichlorophenol	ND		2120	225	ug/Kg	¢	01/31/20 14:48	02/03/20 21:31	10
2.4-Dimethylphenol	ND		2120	511	ug/Kg	ø	01/31/20 14:48	02/03/20 21:31	10

If RLs Above Screening Criteria, Why?

Analytical Limitation

- EPA RSLs or MCLs needed for PAHs? Request SIM
- Metals: may need ICP/MS (6020/200.8) instead of ICP/atomic emission spectroscopy (AES) (6010/200.7)

Dilutions Performed

- Is dilution reasonable?
- Does the lab note if it is due to non-target compounds?
- Is it due to an elevated extract volume?

Is It Obvious Why Lab Performed Dilution?

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Analyte	Result Qualifier	RL	MDL Unit	D Prepar		Dil Fac	
Biphenyl	ND	2120	312 ug/Kg		14:48 02/03/20 21:3		10-fold dilution
bis (2-chloroisopropyl) ether	ND	2120	424 ug/Kg		14:48 02/03/20 21:3		
2,4,5-Trichlorophenol	ND	2120	574 ug/Kg	© 01/31/20	14:48 02/03/20 21:3		
2,4,6-Trichlorophenol	ND	2120	424 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
2,4-Dichlorophenol	ND	2120	225 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
2,4-Dimethylphenol	ND	2120	511 ug/Kg	© 01/31/20	14:48 02/03/20 21:3		
2,4-Dinitrophenol	ND	20700	9780 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
2,4-Dinitrotoluene	ND	2120	437 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
2,6-Dinitrotoluene	ND	2120	249 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
2-Chloronaphthalene	ND	2120	349 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
2-Chlorophenol	ND	4120	387 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
2-Methylnaphthalene	ND	2120	424 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	Is there an explanation in the narrative?
2-Methylphenol	ND	2120	249 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
2-Nitroaniline	ND	4120	312 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	Method 827	70D: The following samples were diluted due to color and appearance: TRACON-SS-01-TOP (XXXXXX),
2-Nitrophenol	ND	2120	599 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	TRACON-S	SS-01-BTM (XXXXXX-2), TRACON-SS-02-TOP (XXXXXX-3), TRACON-SS-03-TOP (XXXXXX-5), TRACON-SS-03-1
3,3'-Dichlorobenzidine	ND	4120	2490 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	(XXXXXX-6	6), TRACON-SS-04-TOP (XXXXXX-7), TRACON-SS-04-TOP (XXXXXX-7[MS]), TRACON-SS-04-TOP
3-Nitroaniline	ND	4120	586 ug/Kg				[MSD]), TRACON-SS-04-BTM (XXXXXX-8), TRACON-SS-05-TOP (XXXXXX-9), TRACON-SS-05-BTM
4,6-Dinitro-2-methylphenol	ND	4120	2120 ug/Kg				0) and TRACON-SS-06-TOP (XXXXXX-11). Elevated reporting limits (RL) are provided.
4-Bromophenyl phenyl ether	ND	2120	299 ug/Kg		14:48 02/03/20 21:3		
4-Chloro-3-methylphenol	ND	2120	524 ug/Kg		14:48 02/03/20 21:3		
4-Chloroaniline	ND	2120	524 ug/Kg		14:48 02/03/20 21:3		
4-Chlorophenyl phenyl ether	ND	2120	262 ug/Kg		14:48 02/03/20 21:3		
4-Methylphenol	ND	4120	249 ug/Kg		14:48 02/03/20 21:3		
4-Nitroaniline	ND	4120	1110 ug/Kg		14:48 02/03/20 21:3		
4-Nitrophenol	ND	4120	1480 ug/Kg		14:48 02/03/20 21:3		
Acenaphthene	ND	2120	312 ug/Kg		14:48 02/03/20 21:3	-	
Acenaphthene	ND	2120	274 ug/Kg		14:48 02/03/20 21:3		
	ND	2120	287 ug/Kg		14:48 02/03/20 21:3		
Acetophenone Anthracene	ND	2120			14:48 02/03/20 21:3 14:48 02/03/20 21:3		
			524 ug/Kg				
Atrazine	ND	2120	736 ug/Kg		14:48 02/03/20 21:3		
Benzaldehyde	ND	2120	1680 ug/Kg		14:48 02/03/20 21:3		
Benzo[a]anthracene	882 J	2120	212 ug/Kg		14:48 02/03/20 21:3		"I" flag: recult is below PL but above MDL is
Benzo[a]pyrene	1020 J	2120	312 ug/Kg		14:48 02/03/20 21:3		"J" flag: result is below RL but above MDL; is
Benzo[b]fluoranthene	1220 J	2120	337 ug/Kg		14:48 02/03/20 21:3		actimated value
Benzo[g,h,i]perylene	881 J	2120	225 ug/Kg		14:48 02/03/20 21:3		estimated value
Benzo[k]fluoranthene	540 J	2120	274 ug/Kg		14:48 02/03/20 21:3		
Bis(2-chloroethoxy)methane	ND	2120	449 ug/Kg		14:48 02/03/20 21:3		
Bis(2-chloroethyl)ether	ND	2120	274 ug/Kg		14:48 02/03/20 21:3		
Bis(2-ethylhexyl) phthalate	ND	2120	724 ug/Kg	© 01/31/20	14:48 02/03/20 21:3		
Butyl benzyl phthalate	ND	2120	349 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
Caprolactam	ND	2120	636 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	
Carbazole	ND	2120	249 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	35
Chrysene	844 J	2120	474 ug/Kg	© 01/31/20	14:48 02/03/20 21:3	1 10	

Reminders

Laboratory	Field	Matrix	Sample-Specific	Batch-Specific	
Performance	Performance	Interferences	Holding Times	Method Blanks	
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples	
Lab Control Samples	Sample Preservation	Internal Standards*	Field Duplicates	Calibrations*	
•			Surrogates	Tunes*	
Holding Times	Field Duplicates	Matrix Spikes	Internal Standards*	Field Blanks	
Calibrations*		Laboratory Duplicates	Matrix Spikes		
Tunes*			Laboratory Duplicates		
* Not typically provid	ded in Level 2 deliver	* Not typically provided in Level 2 deliverables			

Blanks: Method Blanks, Field Blanks, & Equipment Blanks

- Purposes:
 - Method Blank:

To check for potential lab contamination in the sample preparation and analysis step

 Field/Equipment/Trip Blanks: To check for potential contamination from ambient field conditions, equipment, or shipping/storage

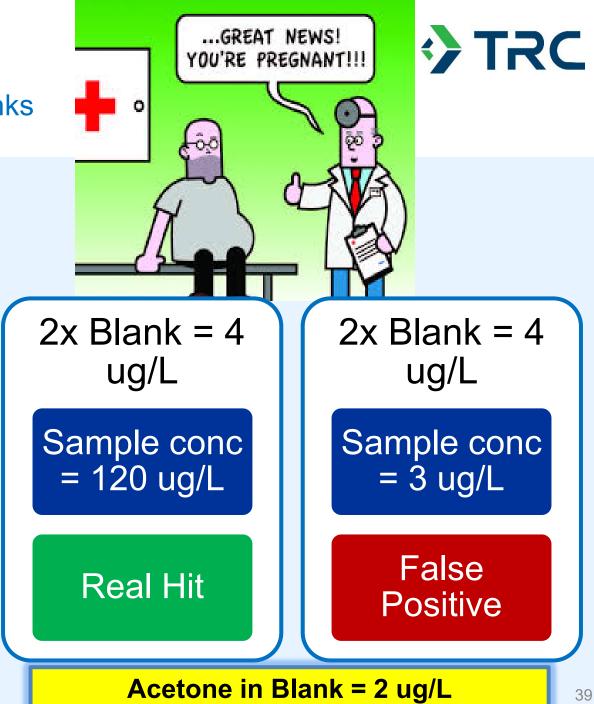
- Does each prep batch have its own method blank?
- Were field/equipment blanks collected at the required frequency?

Method Blank Data in Your Data Package

Lab Sample ID: MB 480-515744/2-A Matrix: Solid Analysis Batch: 515698						Client Sample ID: Method Blar Prep Type: Total/N Prep Batch: 5157		
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,2-Dichlorobenzene	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,1,2,2-Tetrachloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,1,2-Trichloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,1-Dichloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,1-Dichloroethene	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,2,4-Trichlorobenzene	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,2-Dibromo-3-Chloropropane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,2-Dichloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,2-Dichloropropane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1.3-Dichlorobenzene	ND	5.00		ua/Ka		01/31/20 10:30	01/31/20 11:48	1

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-515713/1-/ Matrix: Solid Analysis Batch: 516280	мв	Ъв					i i	le ID: Method Prep Type: To Prep Batch: 5	otal/NA
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Antimony	ND		14.7		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Arsenic	ND		1.96		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Barium	ND		0.490		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Beryllium	ND		0.196		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Cadmium	ND		0.196		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Chromium	ND		0.490		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Lead	ND		0.979		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Nickel	ND		4.90		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Selenium	ND		3.92		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Silver	ND		0.588		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Molybdenum	ND		0.979		mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Thallium	ND		5.88		mg/Kg		01/31/20 10:43	02/04/20 13:07	1


Method blanks will be reported in data package.

- Each method
- Each day of analysis/extraction
- Results for all target analytes reported in samples

Blank Evaluation

Method Blanks, Field Blanks, & Equipment Blanks

- Is anything detected in the blank?
- Are there any potential false positives?
- General Rule of Thumb: If concentration in sample <2x the blank concentration, the result is potentially a false positive
- Common contaminants: methylene chloride, acetone, phthalates, 2-butanone

The lab method blank contains 130 ug/kg benzene. One of the field samples associated with this blank contains 250 ug/kg benzene. How would you evaluate the benzene result in this field sample?

A. Report as is since it is highly unlikely benzene is a laboratory contaminant.

- B. Flag the benzene result as a potential false positive since the concentration is <2x the blank concentration.</p>
- C. Report as is since the benzene result is > the blank concentration.

Reminders

Laboratory Performance	Field Performance	Matrix Interferences	Sample-Specific	Batch-Specific
Fenomance		Interferces	Holding Times	Method Blanks
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples
Lab Control Samples	Sample Preservation	Internal Standards*	Field Duplicates	Calibrations*
			Surrogates	Tunes*
Holding Times	Field Duplicates	Matrix Spikes	Internal Standards*	Field Blanks
Calibrations*		Laboratory Duplicates	Matrix Spikas	
		Duplicates	Matrix Spikes	
Tunes*			Laboratory Duplicates	
* Not typically provide	ed in Level 2 deliverables	* Not typically provided in Level 2 deliverables		

Laboratory Control Samples (LCS)

- **Purposes:** To check the accuracy of the method in the absence of any matrix effects
- What are LCSs?
- Does each analytical or prep batch have its own LCS?

LCS Data in Your Data Package

Lab Sample ID: LCS 480-515790/2-A Matrix: Solid				Cliei	nt Sai	nple IL): Lab Control Sampl Prep Type: Total/N
Analysis Batch: 515974							Prep Batch: 51579
· ····, · · · · · · · · · · · · · · · ·	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Biphenyl	1660	1527		ug/Kg		92	59 - 120
bis (2-chloroisopropyl) ether	1660	1519		ug/Kg		92	44 - 120
2,4,5-Trichlorophenol	1660	1456		ug/Kg		88	59 - 126
2,4,6-Trichlorophenol	1660	1402		ug/Kg		85	59.123
2,4-Dichlorophenol	1660	1431		ug/Kg		86	61 - 120
2,4-Dimethylphenol	1660	1390		ug/Kg		84	59 - 120
2,4-Dinitrophenol	3320	2503		ug/Kg		75	41 - 146
2,4-Dinitrotoluene	1660	1626		ug/Kg		98	63 - 120
2,6-Dinitrotoluene	1660	1598		ug/Kg		96	66 - 120
2-Chloronaphthalene	1660	1399		ug/Kg		84	57 - 120
2-Chlorophenol	1660	1480		ug/Kg		89	53 - 120
2-Methylnaphthalene	1660	1468		ug/Kg		88	59 - 120
2-Methylphenol	1880	1493		ua/Ka		80	54 120

Lab Sample ID: LCSSRM 480-515713/2-A Matrix: Solid Analysis Batch: 516280				Clien	nt Sai	nple IC): Lab Control Sample Prep Type: Total/NA <u>Prep B</u> atch: 515713
	Spike	LCSSRM	LCSSRM				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	282	98.17		mg/Kg		34.8	10.0 - 129.
Arsenic	155	117.1		mg/Kg		75.5	8 64.5 - 120. 0
Barium	439	343.6		mg/Kg		78.3	70.8 - 118.
Beryllium	192	156.5		mg/Kg		81.5	69.8 - 116.
Cadmium	61.5	49.35		mg/Kg		80.2	7 68.6 - 114. 3
Chromium	104	84.94		mg/Kg		81.7	67.8 - 126.
Lead	126	113.5		mg/Kg		90.1	0 70.9 - <u>1</u> 27.

LCSs will be reported in data package.

- Each method
- Each day of analysis/extraction
- Percent recoveries for all target analytes reported in samples

Laboratory Control Sample (LCS) Evaluation

TRC

ACCURACY

- Were <u>all</u> target analytes reported?
- Were all recoveries within the acceptance limits?
- If LCS recoveries are outside limits:
 POTENTIAL LOW BIAS or
 POTENTIAL HIGH BIAS

Affects the whole batch of samples prepared with the LCS.

Potentially unusable results:

- Organic methods: if recoveries are <10%
- Inorganic methods: if recoveries are <30%</p>

Question

If naphthalene recovers at 25% in the LCS (criteria are 40-140%), which of the following is true?

- A. Naphthalene concentrations in the associated samples are biased high.
- B. Naphthalene concentrations in the associated samples are biased low.
- C. Naphthalene results are unusable.

Reminders

Laboratory	Field	Matrix	Sample- Specific	Batch-Specific
Performance	Performance	Interferences	Holding Times	Method Blanks
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples
Lab Control Samples	Sample Preservation	Internal Standards*	Field Duplicates	Calibrations*
Holding Times	Field Duplicates	Matrix Spikes	Surrogates	Tunes*
		Laboratory	Internal Standards*	Field Blanks
Calibrations*		Duplicates	Matrix Spikes	
Tunes*			Laboratory Duplicates	
*Not typica	ally provided in Level 2 d	*Not typically provided	in Level 2 deliverables	

Matrix Spikes/Matrix Spike Duplicates (MS/MSDs)

- What are these?
- Were these analyses performed on a project sample?

MS/MSDs not applicable to the air matrix

Matrix spikes especially important for inorganic parameters:

- Metals
- Hexavalent chromium
- Total cyanide

MS/MSD Data in Your Data Package

Lab Sample ID: XXXXXX-7 N	S						Client	Sampl	e ID: - SS	-04-TOP Prep
Matrix: Solid										ype: Total/NA
Analysis Batch: 516280									Prop B	atch: 515713
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Antimony	ND	F1	51.8	39.06	F1	mg/Kg	¢	74	75_125	
Arsenic	5.34		51.8	50.51		mg/Kg	¢	87	75 - 125	
Barium	46.1	F1	51.8	113.6	F1	mg/Kg	¢	130	75_125	
Beryllium	0.431		51.8	47.64		mg/Kg	¢	91	75 - 125	
Cadmium	0.391		51.8	47.00		mg/Kg	¢	90	75_125	
Chromium	17.8		51.8	67.55		mg/Kg	¢	96	75 - 125	
Lead	60.0		51.8	105.9		mg/Kg	¢	89	75.125	
Nickel	10.8		51.8	60.19		mg/Kg	¢	95	75 - 125	
Selenium	ND		51.8	45.63		mg/Kg	¢	86	75_125	
Silver	ND		12.9	11.59		mg/Kg	¢	90	75 - 125	
Molybdenum	ND		51.8	49.26		mg/Kg	¢	94	75_125	
Thallium	ND		51.8	49.67		mg/Kg	¢	96	75 - 125	
Vanadium	26.2		51.8	77.90		mg/Kg	¢	100	75.125	
Zinc	140		51.8	182.5		mg/Kg	¢	82	75 - 125	

Lab Sample ID: XXXXXX-7 M Matrix: Solid	AS						Client	Sample	e ID: - SS -04-TOP Prep Type: Total/NA
Analysis Batch: 515698	Sample	Sample	Spike	ме	MS				Prep Batch: 515744 %Rec.
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
1,1,1-Trichloroethane	ND	F2	163	141.0		ug/Kg	ø	86	11-121
1,2-Dichlorobenzene	ND	F1 F2	163	68.64	F1	ug/Kg	¢	42	75 - 120
1,1,2,2-Tetrachloroethane	ND	F1 F2	163	96.08	F1	ug/Kg	ø	59	80 - 120
1,1,2-Trichloroethane	ND	F1 F2	163	112.8	F1	ug/Kg	¢	69	78 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	F2	163	125.3		ug/Kg	¢	77	60 _ 140
ne 1,1-Dichloroethane	ND	F2	163	140.2		ug/Kg	ø	86	73_126
1,1-Dichloroethene	ND	F2	163	138.5		ug/Kg	¢	85	59 - 125
1,2,4-Trichlorobenzene	ND	F1	163	35.79	F1	ug/Kg	¢	22	64 _ 120
1,2-Dibromo-3-Chloropropane	ND	F1 F2	163	77.10	F1	ug/Kg	¢	47	63 - 124
1,2-Dichloroethane	ND	F2	163	132.4		ug/Kg	¢	81	77_122
1,2-Dichloropropane	ND	F2	163	130.8		ug/Kg	ø	80	75 - 124
1,3-Dichlorobenzene	ND	F1 F2	163	70.89	F1	ug/Kg	¢	43	74 _ 120

Was it performed on a sample from your project?

MS/MSDs will be reported in data package.

- Each method, if performed
- Percent recoveries for all target analytes reported in samples

Matrix Spikes/Matrix Spike Duplicates (MS/MSDs) TRC

- Were <u>all</u> target analytes reported?
- Were all recoveries within the acceptance limits?
- Were all RPDs within the acceptance limits?
- If MS recoveries are outside limits:
 - POTENTIAL LOW BIAS or
 - POTENTIAL HIGH BIAS

Organics: Affects the sample that was spiked.

Inorganics: Affects all samples in data set of similar matrix (e.g., all groundwater)

Potentially unusable results:

- Organic methods: if recoveries are <10%</p>
- Inorganic methods: if recoveries are <30%</p>

PRECISION

If arsenic recovers at 25% in the MS (criteria are 75-125%), which of the following is true?

- A. Arsenic concentration in the associated sample is biased high.
- B. Arsenic concentration in the associated sample is biased low.
- C. Arsenic result in the associated sample is unusable.

Reminders

Laboratory	Field	Matrix	Sample-Specific	Batch-Specific
Performance	Performance	Interferences	Holding Times	Method Blanks
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples
Lab Control Samples	Sample Preservation	Internal Standards*	Field Duplicates	Calibrations*
Holding Times	Field Duplicates	Matrix Spikes	Surrogates	Tunes*
Calibrations*		Laboratory	Internal Standards*	Field Blanks
Calibrations		Duplicates	Matrix Spikes	
Tunes*			Laboratory Duplicates	
*Not typica	ally provided in Level 2 de	*Not typically provided in Level 2 deliverables		

Field Duplicates

- Were relative percent differences (RPDs) within the acceptance criteria?
- What are the acceptance criteria?
- Typical (when results are >5x the RL):
 - RPD ≤30 for aqueous and indoor air samples
 - RPD \leq 50 for solid and soil gas samples

Relative Percent Difference (RPD)

- RPD = |X1 X2| / (Average X1, X2) * 100
- RPD = |Difference between two results|/ (Average of two results)* 100

NOT Percent Difference:

Percent Difference = (X2 - X1)/X1 (where X1 is the true value)

Some Potential Field Duplicate Scenarios

	Compound	RL (ug/L)	Sample (ug/L)	Field Dup (ug/L)	RPD					
Both results <5x the RL:	Benzene	1	1.8	0.3 J	52.6					
aqueous or air samples	Acceptable absolut	When both results are <5x the RL, look at the absolute difference between the results. Acceptable absolute difference: <rl 1.8 – 0.3 = 1.5: UNACCEPTABLE</rl 								
Both results <5x the RL:	Analyte	RL (mg/kg)	Sample (mg/kg)	Field Dup (mg/kg)	RPD					
soil/sediment samples	Lead	2	3.9	2.1	60					
·	When both results are <5x the RL, look at the absolute difference between the results. Acceptable absolute difference: <2x the RL 3.9 – 2.1 = 1.8: ACCEPTABLE									
	Analyte	RL (mg/kg)	Sample (mg/kg)	Field Dup (mg/kg)	RPD					
One detected result and	Benzene	0.01	0.2	0.01 U	NC					
one nondetect result	Lead	2	3	2.0 U	NC					
		Benzene: absolute difference: 0.2 – 0.01 = 0.19 (>2xRL so UNACCEPATABLE) Lead: 3 – 2 = 1 (<2x RL so ACCEPTABLE)								

Field Duplicate Reporting Recommendations

Scenario	Reporting Recommendations
Both results nondetect	Use the lower of the two RLs
One result detected and one result not detected	Use the detected result
Both results detected and precision acceptable	Use the average or higher of the two results
Both results detected and precision not acceptable	Use the higher of the two results

Where is Variability Coming From?

- Sample Non-homogeneity
- Sampling Variability
- Laboratory Variability

Reminders

Laboratory		Matrix	Sample-Specific	Batch-Specific	
Performance	Field Performance	Interferences	Holding Times	Method Blanks	
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples	
Lab Control	Sample		Field Duplicates	Calibrations*	
Samples	Preservation	Internal Standards*	Surrogates	Tunes*	
Holding Times	Field Duplicates	Matrix Spikes	Internal Standards*	Field Blanks	
Calibrations*		Laboratory	Matrix Onilas		
		Duplicates	Matrix Spikes		
Tunes*			Laboratory Duplicates		
*Not typic	ally provided in Level 2 de	*Not typically provide	d in Level 2 deliverables		

Surrogates (Organic Analyses Only)

What are they?

Examples: VOCs: Toluene-d8 SVOCs: Phenol-d5 PCBs: Decachlorobiphenyl

Surrogate Data in Your Data Package

Method: 8260C - Volatile O Analyte		Qualifier	RL	MDL
Isopropylbenzene	ND		8.52	
Methyl acetate	ND		42.6	
Methyl tert-butyl ether	ND		8.52	
Methylcyclohexane	ND		8.52	
Methylene Chloride	ND		8.52	
Styrene	ND		8.52	
Tetrachloroethene	ND		8.52	
Toluene	ND		8.52	
trans-1,2-Dichloroethene	ND		8.52	
trans-1,3-Dichloropropene	ND		8.52	
Trichloroethene	ND		8.52	
Trichlorofluoromethane	ND		8.52	
Vinyl chloride	ND		8.52	
Xylenes, Total	ND		17.0	
Surrogate	%Recovery	Qualifier	Limits	
Toluene-d8 (Surr)	98		71 - 125	
1,2-Dichloroethane-d4 (Surr)	106	6 64 - 126		
4-Bromofluorobenzene (Surr)	95		72_126	
Dibromofluoromethane (Surr)	107		60 - 140	
	1		1	

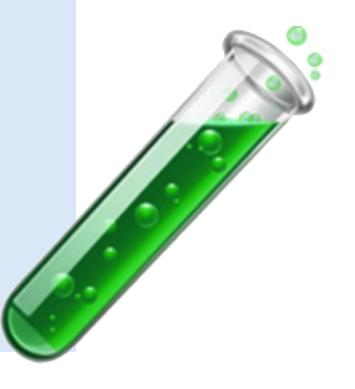
Actual %Rs

Phenol-d5

Method: 8270D - Semivolatile			GC/ MS) (Co
Analyte Di-n-octyl phthalate	Result	Qualifier	RL 1090	_
Dibenz(a,h)anthracene	ND		1090	
Dibenzofuran	ND		1090	
Diethyl phthalate	ND		1090	
	ND		1090	
Dimethyl phthalate Fluoranthene			1090	
	305	J		
Fluorene	ND		1090	
Hexachlorobenzene	ND		1090	
Hexachlorobutadiene	ND		1090	
Hexachlorocyclopentadiene	ND		1090	
Hexachloroethane	ND		1090	
Indeno[1,2,3-cd]pyrene	175	J	1090	
Isophorone	ND		1090	
N-Nitrosodi-n-propylamine	ND		1090	
N-Nitrosodiphenylamine	ND		1090	
Naphthalene	ND		1090	
Nitrobenzene	ND		1090	
Pentachlorophenol	ND		2120	
Phenanthrene	ND		1090	
Phenol	ND		1090	
Pyrene	278	J	1090	
Surrogate	%Recovery	Qualifier	Limits	
2,4,6-Tribromophenol	105		54 - 120	Acid
2-Fluorobiphenyl	94	B/N	60_120	
	92		52 - 120	Acid
2-Fluorophenol				
2-Fluorophenol Nitrobenzene-d5	75	B/N	53_120	Aciu

88

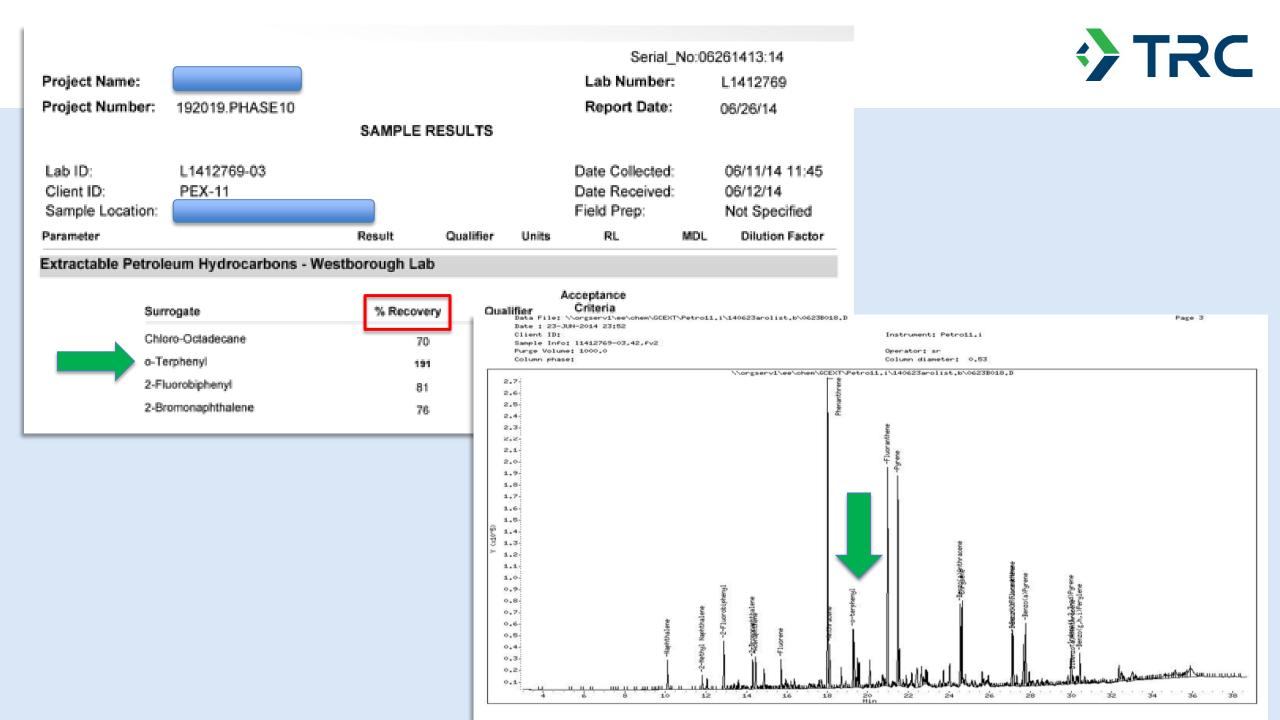
54_120


Acid

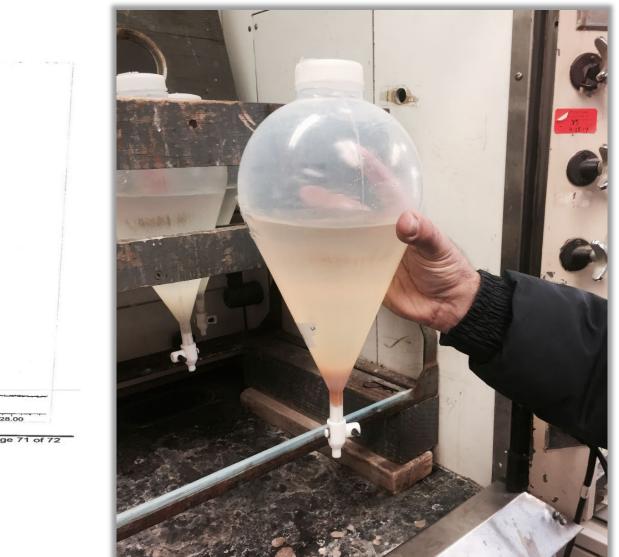
If Surrogate Recoveries are Outside Criteria

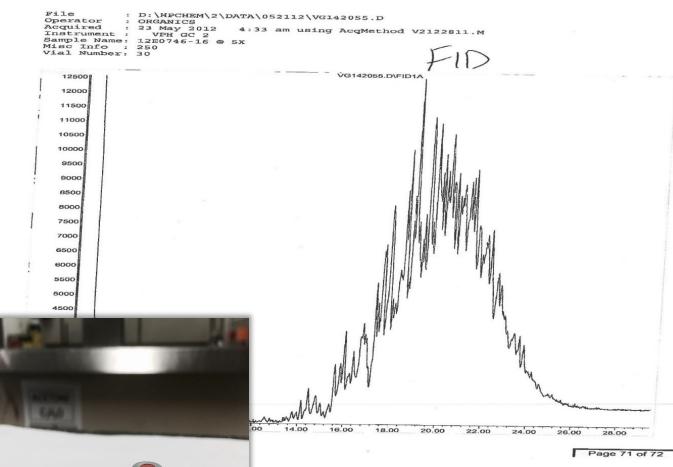
• Lab typically is required to re-prep and/or re-analyze the sample.

 Not uncommon to have two sets of data for one sample.

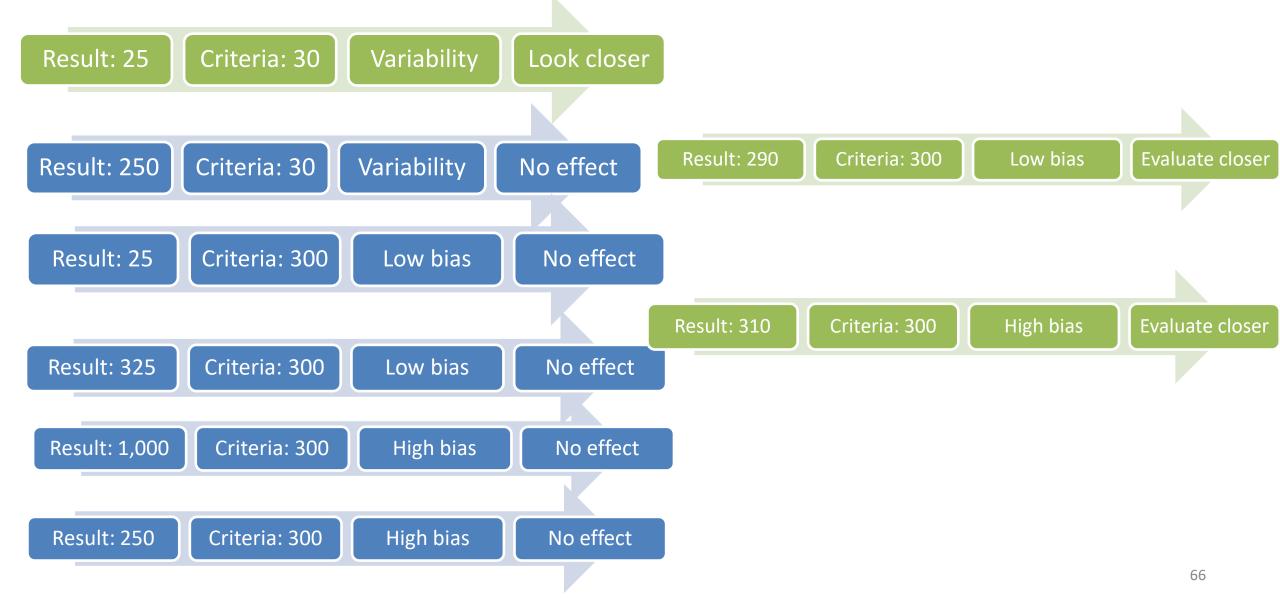

Biases Due to Surrogate Recoveries

- Were all recoveries within the acceptance limits?
- If surrogate recoveries are outside limits:
 - POTENTIAL LOW BIAS or
 - POTENTIAL HIGH BIAS
- Sample-specific
- Effect on results dependent on method


Method	Effect on Data
VOCs	If 1 surrogate out: affects all target VOCs
SVOCs	If ≥ 2 B/N surrogates out but ≥10%: affects all B/N compounds If ≥ 2 acid surrogates out but ≥10%: affects all acid compounds If 1 B/N or 1 acid surrogate <10%: affects associated compounds
Pesticides & PCBs	Affects all target pesticides or PCBs: dependent on which column surrogate is outside limits


Potentially unusable results: if recoveries are <10%

Matrix Interference


Let's Summarize Potential Biases

Blanks	• Detected results	HIGH BIAS All Associated Samples in Batch
Holding Times	• Missed holding times	LOW BIAS Sample-Specific
LCS	 Low recoveries High recoveries 	LOW BIAS All Associated HIGH BIAS Samples in Batch
Surrogates, Matrix Spikes	 Low recoveries High recoveries 	LOW BIAS HIGH BIAS Compound-Specific

If There is Bias or Uncertainty in Result, How Does This Affect Decision-making?

- Does the case narrative note any other anomalies with the data?
- Do any results look questionable?
- Has the EDD been compared with the lab report?

Job Narrative XXXXXX

REVISED REPORT: To report SVOCs to the MDL at the client's request. This report replaces the one generated on 02/11/20 @ 1259.

Comments No additional comments

Receipt

manauve

The samples were received on 1/30/2020 9:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 3.8° C and 4.1° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCVIS) associated with batch 480-515698 recovered above the upper control limit for Trichlorofluoromethane. The samples associated with this CCVIS were non-detect for the affected analyte; therefore, the data have been reported. The following samples are impacted: XXXXX-SS-01-TOP (XXXXXX), TRACON-SS-01-BTMXXXXX1-2), TRACON-SS-0 TOP (XXXXXC-3), TRACON-SS-02-BTM (XXXXXX-4), TRACON-SS-03-TOP (XXXXXX-5), TRACON-SS-03-BTM (XXXXXX-6), TRACON-SS-04-TOP (XXXXXX-7), TRACON-SS-04-BTM (XXXXXX-8), TRACON-SS-05-TOP (XXXXXX-9), TRACON-SS-05 BTM (XXXXXX-10) and TRACON-SS-06-TOP (XXXXXX-11).

Method 8260C: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 480-515744 and 480-515744 and analytical batch 480-515698 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. The following samples are impacted: TRACON-SS-04-TOP (XXXXXX-7[MSD]) and TRACON-SS-04-TOP (XXXXXX-7[MSD]).

Method 8260C: The matrix spike duplicate (MSD) precision for preparation batch 480-515744 and analytical batch 480-515698 was outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory co sample (LCS) precision was within acceptance limits. The following sample is impacted: TRACON-SS-04-TOP (XXXXXX-7[MSD]).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The continuing calibration verification (CCV) associated with batch 480-515974 recovered outside acceptance criteria, low biased, for Hexachlorocyclopentadiene. A reporting limit (RL) standard was analyzed, and the target analyte was detected. Since the associated samples were non-detect for this analyte, the data have been reported.

Some Analyte-Specific Issues

1,4-Dioxane

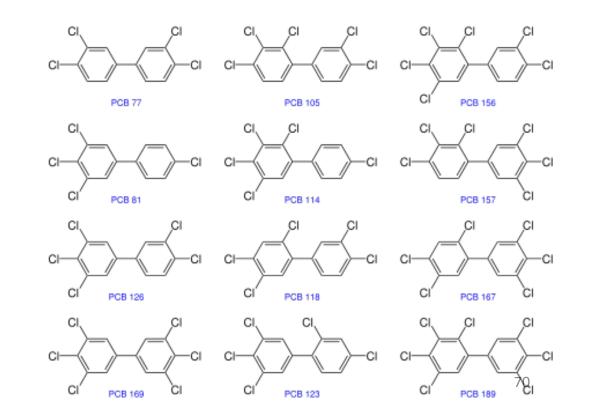
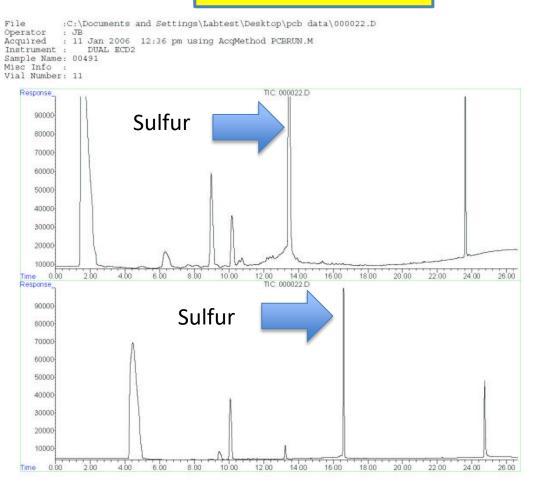
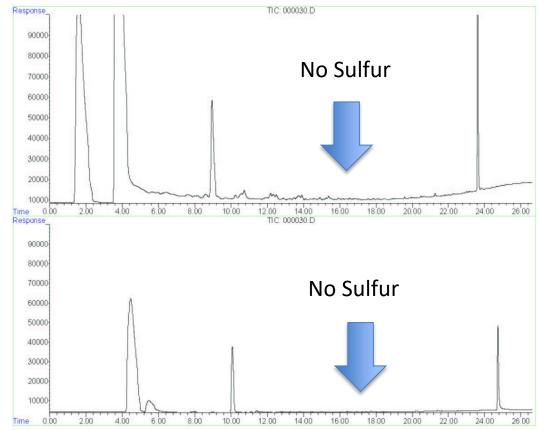

CH₂

Image: Constant of Constan					
Aqueousscan GC/MSImage: Comparison of the scan definition	Method	Technique	RLs	Comments	
RadiaRadiaProne to interferencesR270 (SVOC): AqueousFull scan GC/MS5-10 µg/LPoor extraction efficiencyIsotope dilution with SIM GC/MS0.15-0.4 µg/L1,4-dioxane-d8 IS improved precision & accuracyR260 (VOC): SolidAmbient P&T with full scan GC/MS0.2-0.5 mg/kg1,4-dioxane-d8 IS Not routinely neededR277 (SVOC): SolidFull scan GC/MS0.002-0.005 mg/kg1,4-dioxane-d8 IS Not routinely neededR277 (SVOC): SolidFull scan GC/MS0.05-0.2 mg/kgPoor extraction efficiencyR2870 (SVOC): SolidSolid Phase Extraction (SPE) with SIM0.05-0.1 µg/LVor extraction efficiency	8260 (VOC): Aqueous		200-500 μg/L	1,4-dioxane-d8 Internal Standard (IS)	
AqueousIsotope dilution with SIM GC/MS0.15-0.4 μg/L1,4-dioxane-d8 IS Improved precision & accuracy3260 (VOC): SolidAmbient P&T with full scan GC/MS0.2-0.5 mg/kg1,4-dioxane-d8 IS Not routinely needed3270 (SVOC): SolidFull scan GC/MS0.002-0.005 mg/kg1,4-dioxane-d8 IS Not routinely needed3270 (SVOC): SolidFull scan GC/MS0.05-0.2 mg/kgPoor extraction efficiency3270 (SVOC): SolidSolid Phase Extraction (SPE) with SIM0.05-0.1 μg/LImproved precision & accuracy		Heated P&T with SIM GC/MS	2-5 μg/L		
Isotope dilution with SIM GC/MS0.15-0.4 μg/L1,4-dioxane-d8 IS Improved precision & accuracy3260 (VOC): SolidAmbient P&T with full scan GC/MS0.2-0.5 mg/kg1,4-dioxane-d8 IS Not routinely neededHeated P&T with SIM GC/MS0.002-0.005 mg/kg1,4-dioxane-d8 IS Not routinely needed3270 (SVOC): SolidFull scan GC/MS0.05-0.2 mg/kgPoor extraction efficiencyIsotope dilution with SIM GC/MS0.05-0.2 mg/kg1,4-dioxane-d8 IS Improved precision & accuracyFPA 522: DrinkingSolid Phase Extraction (SPE) with SIM0.05-0.1 μg/L	8270 (SVOC): Aqueous	Full scan GC/MS	5-10 μg/L	Poor extraction efficiency	
Heated P&T with SIM GC/MS0.002-0.005 mg/kg1,4-dioxane-d8 IS Not routinely neededS270 (SVOC): SolidFull scan GC/MS0.05-0.2 mg/kgPoor extraction efficiencyIsotope dilution with SIM GC/MS0.05-0.2 mg/kg1,4-dioxane-d8 IS Improved precision & accuracyEPA 522: DrinkingSolid Phase Extraction (SPE) with SIM0.05-0.1 µg/L		Isotope dilution with SIM GC/MS	0.15-0.4 μg/L		
S270 (SVOC): SolidFull scan GC/MS0.05-0.2 mg/kgPoor extraction efficiencyIsotope dilution with SIM GC/MS0.05-0.2 mg/kg1,4-dioxane-d8 IS Improved precision & accuracyEPA 522: DrinkingSolid Phase Extraction (SPE) with SIM0.05-0.1 µg/L	8260 (VOC): Solid	Ambient P&T with full scan GC/MS	0.2-0.5 mg/kg	1,4-dioxane-d8 IS	
Isotope dilution with SIM GC/MS 0.05-0.2 mg/kg 1,4-dioxane-d8 IS Improved precision & accuracy Solid Phase Extraction (SPE) with SIM 0.05-0.1 µg/L		Heated P&T with SIM GC/MS	0.002-0.005 mg/kg		
EPA 522: Drinking Solid Phase Extraction (SPE) with SIM 0.05-0.1 μg/L Improved precision & accuracy	8270 (SVOC): Solid	Full scan GC/MS	0.05-0.2 mg/kg	Poor extraction efficiency	
		Isotope dilution with SIM GC/MS	0.05-0.2 mg/kg		
	EPA 522: Drinking water		0.05-0.1 μg/L		

Polychlorinated Biphenyls (PCBs)



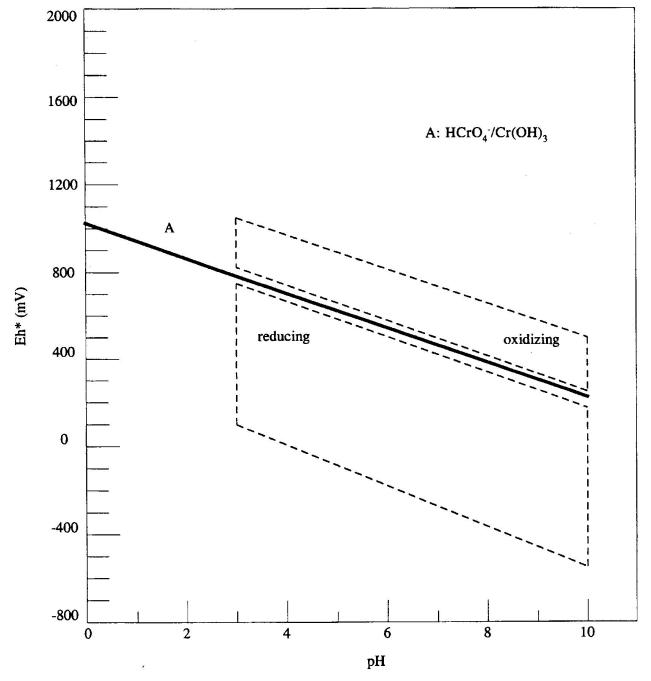
- Labs should always perform acid cleanup on all samples and sulfur cleanup on sediment samples.
- PCB Aroclors or PCB Congeners or PCB Homologues??
- Nondetect PCB Aroclor results do not necessarily mean no PCBs present in sample!
 - Weathered Aroclors
 - Results close to RL
- Dual Column Analyses:
 - Higher result reported (8000B)
 - Lower result reported (8000D)
- Holding Time: One year to extraction


Sulfur Cleanup Before and After: Affects Pesticides & PCBs > TRC

Before Sulfur Cleanup

After Sulfur Cleanup

File :C:\Documents and Settings\Labtest\Desktop\pcb data\000030.D Operator : JB Acquired : 11 Jan 2006 2:55 pm using AcqMethod PCBRUN.M Instrument : DUAL ECD2 Sample Name: 491 tba Misc Info : Vial Number: 15



Hexavalent Chromium

- Make sure lab reports "analysis time" for aqueous samples so 24-hour hold time can be verified.
- Soil/sediment samples should also be submitted for pH and ORP analyses.

pH and oxidationreduction potential (ORP) allow data user to determine if reducing environment exists

* Note the Eh values plotted on this diagram are corrected for the reference electrode voltage: 244 mV units must be added to the measured value when a separate calomel electrode is used, or 199 mV units must be added if a combination platinum electrode is

Thallium

• Iron interference on thallium may not be adequately corrected in all matrices by ICP interelement correction factors.

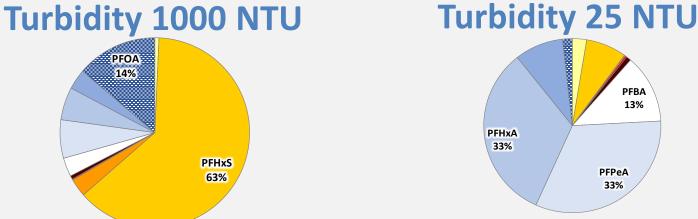
- False positives for thallium using ICP-AES (EPA 6010)
- Confirm by an alternate method, such as ICP-MS (EPA 6020)

PFAS

TRC PFAS Holding Times Using EPA 1633

 \star Some soil/sediments may exhibit microbial growth when stored at 0-6°C

 \bigoplus Biosolids samples at 0-6°C may exhibit microbiological activity that can lead to production of gases which may cause sample to be expelled from container when opened as well as producing noxious gases.


PFAS: Aqueous Samples with Suspended Solids: Lab Procedural Solutions vs Project Objectives

PFBA

13%

"Total" PFAS measurement of aqueous samples; may be acceptable or needed in certain instances depending on project objectives

Total:

- Lab centrifuges sample to separate aqueous and particulate phases.
- Lab extracts aqueous phase.
- Lab extracts remaining particulate phase and combines extract with aqueous phase extract.

Dissolved:

- Lab centrifuges sample to separate aqueous and particulate phases.
- Lab extracts aqueous phase only.

When Should We Be Requesting "Total" versus "Dissolved"?

- Data may be used to make costly decisions
- Data may have potential to impact human health
- Need to confirm quality data available and appropriate to support decisions
- Need to determine potential low or high biases, potential uncertainties, potential false positive or false negative results

Even if the lab follows all method-required procedures, there can still be data quality/usability issues.

Questions?

Thank you

Elizabeth Denly, ASQ CMQ/OE

P: 978-656-3577 | E: <u>EDenly@TRCCompanies.com</u> <u>www.TRCcompanies.com</u>