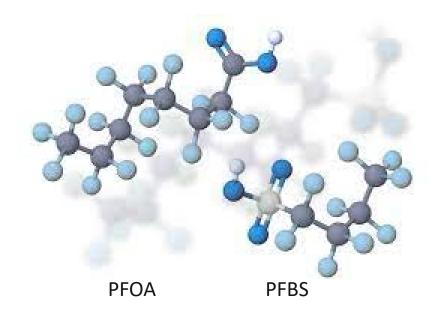
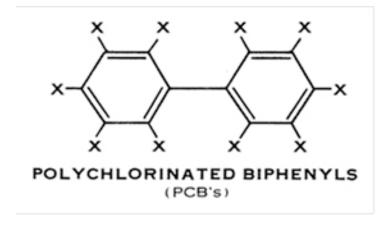
Emerging Contaminants at Brownfields: The Role of Risk Communication

Brownfields Summit 2022: Revitaling New England May 18, 2022

Stephen Zemba, PhD, PE (in MA)

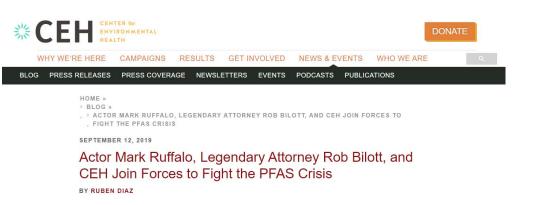
szemba@sanbornhead.com

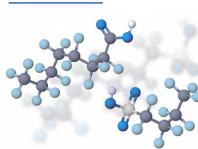

SANBORN


HEAD

© Sanborn, Head & Associates, Inc.

Scope/Outline of Talk


- Risk Communication Background & Perspectives
- PFAS and PCBs Examples for Risk Communication



The Devil We Know, Dark Waters, and a Roadmap

PFAS Action Plan February 14, 2019

EPA's Per- and Polyfluoroalkyl Substances (PFAS) Action Plan

- PFAS 33,100,000
- Beatles 192,000,000

\$EPA October 2021 PFAS Strategic Roadmap: **EPA's Commitments to Action** 2021-2024

2018 The Devil We Know documentary promo (2:16) https://www.youtube.com/watch?v=9GNAvYxaIfM

2021 PFAS Last Week Tonight with John Oliver (20 mins) https://www.youtube.com/watch?v=9W74aeugsiU

SANBORN

NATIONAL LAW REVIEW

Vermont Governor Signs Law Setting Strict PFAS

limits Monday, May 20, 2019

New Hampshire Adopts Aggressive PFAS Drinking Water Bill Friday, July 24, 2020

Massachusetts Finalizes Drinking Water Standard for PFAS Monday, September 28, 2020

EPA's PFAS Roadmap

Action	Legislation	Proposed/Final Rule	PFAS
Hazardous Substance Designations	CERCLA	 Spring 2022/Summer 2023 01/10/2022 proposed rule to OMB (90 days?) 01/14/22 Federal Register notice seeking comment 	PFOS & PFOA
Ambient Water Quality Criteria	CWA	Winter 2022 (Aquatic Life) Fall 2024 (Human Health) • 01/18/2022 Tribe Briefing	PFOA & PFOS (benchmarks for other PFAS?)
NPDES Permits Effluent Limitation Guidelines	CWA	Winter 202209/14/2021 advanced notice of rulemaking	Up to 40 PFAS
Maximum Contaminant Levels	SDWA	Fall 2022/Fall 2023 • SAB meeting 12/16/2021 to 01/07/2022	PFOS & PFOA
Health Advisories		Spring 2022 • 01/18/2022 Tribe Briefing	GenX & PFBS
Toxics Release Inventory	CAA	Spring 2022 (Enhanced)01/24/2022 PFBS & 3 additional compounds	176 + 4 PFAS

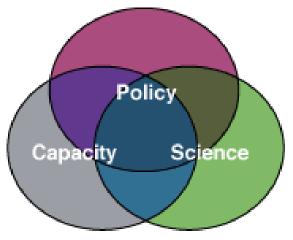
- EPA's Lifetime Health Advisory of 70 ppt could be lowered ~10,000-fold based on preliminary interpretations of toxicity data
- EPA's Science Advisory Board (SAB) is also considering cancer risk in a similarly conservative manner

Ref: https://www.epa.gov/system/files/documents/2021-10/pfas-roadmap_final-508.pdf

Risk Communication - EPA's Perspective

Embracing Risk Communication at EPA

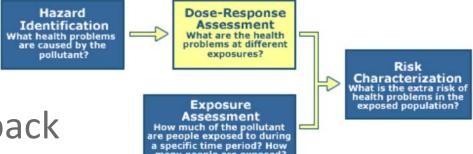
Effectively communicating science and potential health risk is one of the most important jobs we have.


How effective are we at risk communication?

- EPA's Definition: Communication intended to supply audience members with the information they need to make informed, independent judgements about risks to health, safety, and the environment (1)
- EPA's Goal: To provide meaningful, understandable, and actionable information to our many audiences

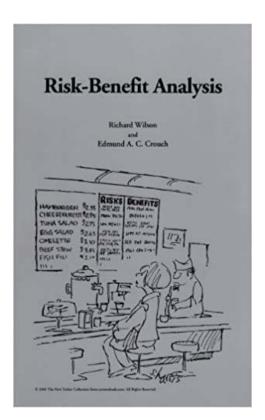
SANBORN | HEAD

Risk Communication A Risk Assessor's & Engineer's Perspective


- Risk communication guidance available (e.g., ITRC Toolkit)
- Personal Observations/Opinions
 - We are often not very good at communicating technical concepts
 - We have in some cases abandoned efforts to "talk science"
 - Use of sound bites and oversimplifications is not always useful
 - Process sometimes gets politicized

The 4 Step Risk Assessment Process

Risk Assessment Methods



- Origins of risk assessment go back to the 1980s (and earlier)
 - Used terms like "bounding estimates" and "overestimate"
 - Over time guidance standardized methods
- Health risk estimates are intentionally biased high
 - Cancer risks often based on the upper 95th percentile confidence limit of the slope of the dose-response curve
 - Non-cancer reference doses often incorporate multiplicative safety factors
- How are these concepts communicated?

Relative Risk An Important Concept, But Slippery Slope

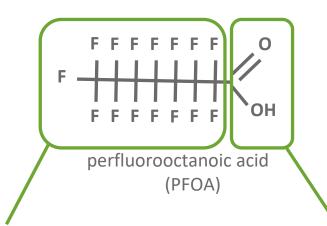
- Opinion: Important to emphasize the risk basis of regulatory programs and degree of protectiveness
- Risk of Death from COVID-19
 - ~ 1,000,000 in 330,000,000
 - = 1 in 330
 - $= 3 \times 10^{-3}$
- Superfund Acceptable Risk Range
 - 1 in 1,000,000 to 1 in 10,000
 - $= 1 \times 10^{-6} \text{ to } 1 \times 10^{-4}$
 - 30 to 3,000 times less than COVID-19
- Actuarial risks
 - Developing cancer: males 40.14%, females 38.70% -- 1 in 2.5
 - Dying from cancer: males 21.34%, females 18.33% -- 1 in 5

What We Know about Health Effects (EPA 5/9/2022)

Current peer-reviewed scientific studies have shown that exposure to certain levels of PFAS may lead to:

- Reproductive effects such as decreased fertility or increased high blood pressure in pregnant women.
- Developmental effects or delays in children, including low birth weight, accelerated puberty, bone variations, or behavioral changes.
- Increased risk of some cancers, including prostate, kidney, and testicular cancers.
- Reduced ability of the body's immune system to fight infections, including reduced vaccine response.
- Interference with the body's natural hormones.
- Increased cholesterol levels and/or risk of obesity.

- Which PFAS?
- Points of departure?
- Dose-response data?
- Key studies?
- Animal studies v. human epi studies?
- Relevance of animal models?



PFAS – A Class of Chemicals

Thousands of PFAS compounds have been identified

They have been used in countless applications thanks to unique and beneficial properties

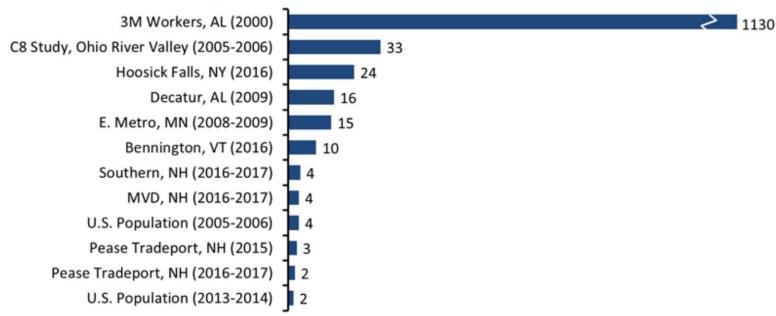
AIR O TO WATER

Fluorocarbon tail

- Strong bonds
- Hydrophobic
- Lipophobic
- Varying length
- Branched isomers

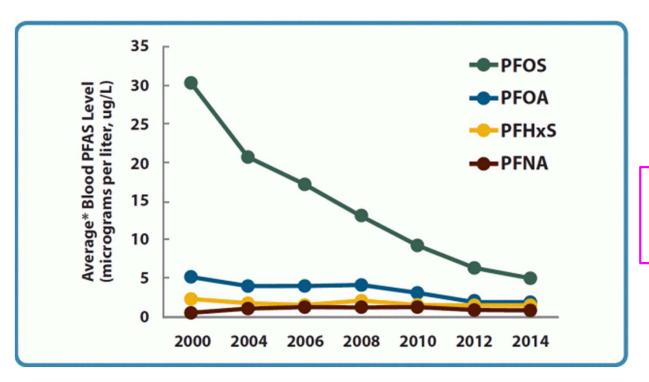
Variations

- Chain length
- Fluorine saturation
- Precursors


Functional group

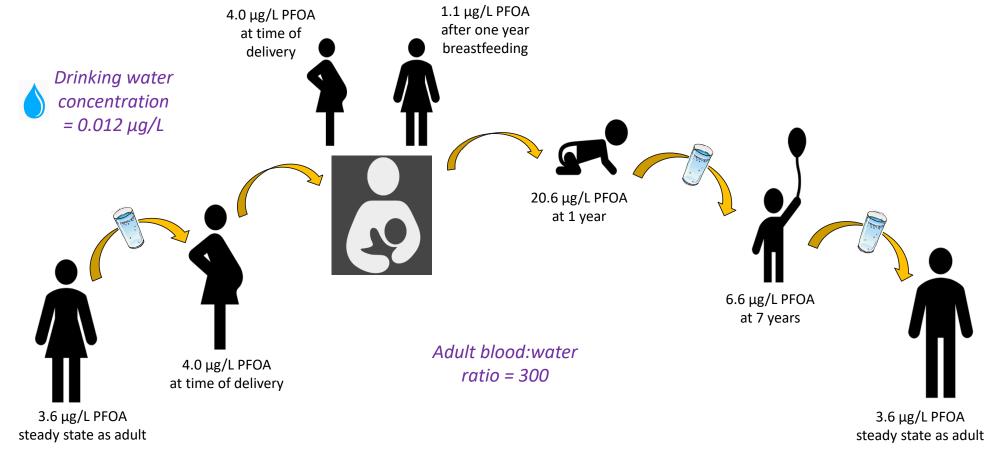
- Strong to weak acids
- Hydrophilic
- Effects chemical properties

PFOA Levels in Blood (μg/L)


Average PFOA Levels in Blood (Micrograms per Liter)

- Exposure to PFOA and PFOS in water elevates levels in blood
- Bioconcentration over time ~100-fold

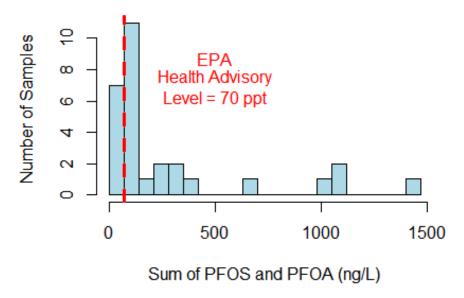
PFOA Levels in Blood (μg/L)


PFOS Levels in Blood

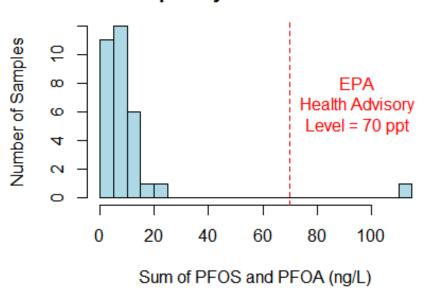
National average: 4.3 μg/l Belmont MI individual: 3200 μg/l

- PFOA background levels decreased from 5 μg/l in late 1990s to present 2 μg/l
- PFOS background levels decreased from 31 μg/l in late 1990s to present 4.3 μg/l

NH Application of Multigenerational Model for PFOA



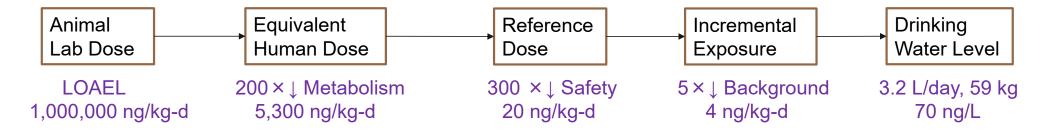
Model based on Goeden et al. (2018), J Expo Sci Environ Epidemiol. 29(2):183-195.



Drinking Water Sampling (PA Data) Peak Concentrations ↓, Frequency of Detection ↑

Pennsylvania UCMR-3 PFOS + PFOA Frequency of Detect = 29/1361

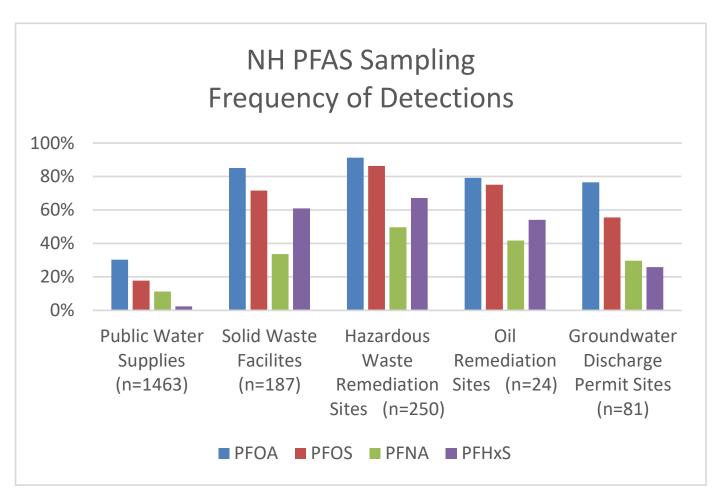
2019 PA Phase I PFOS + PFOA Frequency of Detect = 32/96


PA Phase 1 data: http://files.dep.state.pa.us/Water/DrinkingWater/Perfluorinated%20Chemicals/SamplingResults/PFASPhase1ResultsSummary.pdf

EPA UCMR3 data: https://www.epa.gov/sites/production/files/2017-02/ucmr-3-occurrence-data.zip

SANBORN | HEAD

Risk-Based Standards


- Regulators are making different assumptions and interpretations in the face of uncertainty
- Results: Substantial variability and in some cases adoption of very protective assumptions

Regulatory Authority	Receptor	Chemical	Reference Dose (ng/kg-d)	Background Exemption	Exposure Rate (I/kg-d)	Risk-Based Concentration (ng/l = ppt)
U.S. EPA LHA	Nursing mother	PFOA + PFOS	20	80%	0.054	70
VT DOH	Nursing infant	PFOA + PFOS	20	80%	0.175	20
TX CEQ Small child	PFOA	12	0%	0.041	290	
	Siliali Cilliu	PFOS	23	0%	0.041	560

Likelihood of Finding PFAS in Groundwater Near Sites is High

STATUS REPORT ON THE OCCURRENCE OF PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) CONTAMINATION IN NEW HAMPSHIRE

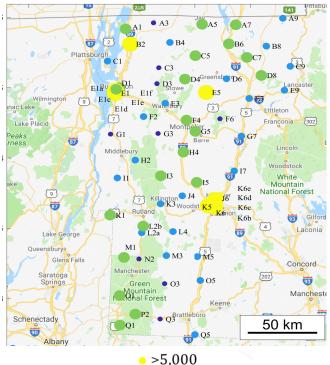
This report has been developed to satisfy the requirements of the Laws of New Hampshire

January Session of 2018, Chapter 306:2 (HB 1766)

Prepared by
New Hampshire Department of Environmental Services

Robert R. Scott, Commissioner

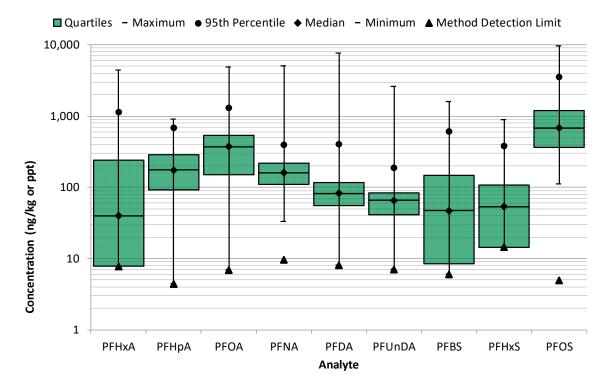
June 2021



PO Box 95, Concord, NH 03302-0095 www.des.nh.gov

Some sampling bias toward expected sites, but also many surprises

Also Likely to Find PFAS in Soil – VT Background Levels

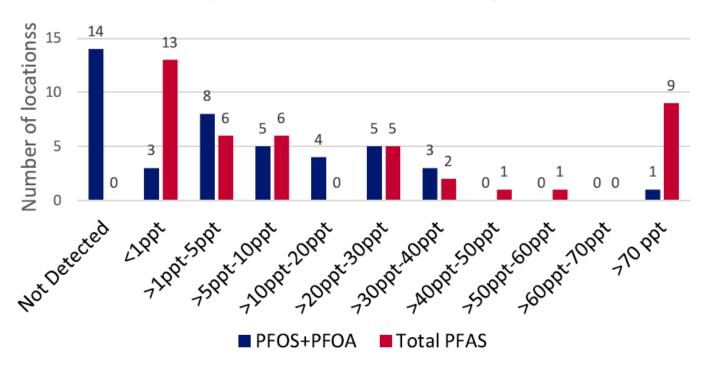

8 locations

ΣPFAS (ng/kg)

• 2,000-5,000 23 locations

• 1,000-2,000 25 locations

• <1,000 10 locations

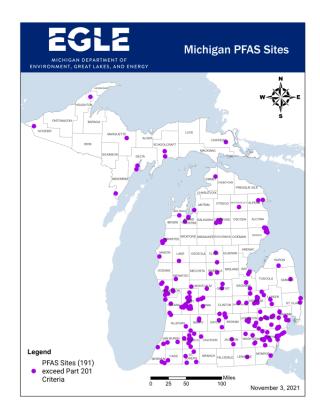


- Median PFOA = 370 ppt (ng/kg)
- Median PFOS = 680 ppt (ng/kg)

SANBORN | H

Also Likely to Find PFAS in Surface Water Colorado DPHE 2020 PFAS Sampling Effort

PFAS Concentrations in Colorado Streams (number of locations= 43)

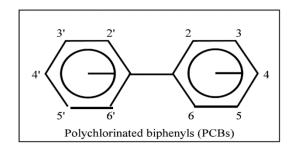

- 18 PFAS investigated
- At least one PFAS detected in every sample

Images from: https://cdphe.colorado.gov/pfas-projects

PFAS Issues and Concerns at Brownfield Sites

- Risk perception by stakeholders
- Groundwater typically riskier than soil
 - Drinking water dominates exposure
 - BUT soil can be a source to groundwater
- Institutional controls can restrict exposure on-site
 - Soil disposal options increasing in cost
- Some PFAS are "forever" chemicals liability?
 - Insurance may cover PFAS, may increase cost
- Phase 1 due diligence to sample, or not to sample?
 - Requirements ambiguous regulations are likely
 - PFAS background levels exist in soil detection likely
 - PFAS is found in groundwater at many types of sites
 - Sources can be off-site including air deposition impacts

PCB Toxicological Values for Risk Assessment

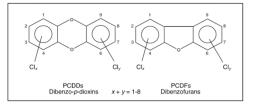

Carcinogenic Potencies (kg-day/mg) (EPA IRIS, 1996)

High risk/persistence1 to 2

Low risk/persistence0.3 to 0.4

Lowest risk/persistence0.04 to 0.07

2,3,7,8-TCDD 130,000 (TEQ/co-planar)



"Non-cancer" Reference Doses (ng/kg-day) (EPA IRIS, 1994 for Aroclors)

Aroclor 125420 higher risk

Aroclor 101670 lower risk

2,3,7,8-TCDD0.0007 TEQ/co-planar

Neurological Equivalents Reference Doses (ng/kg-day) (Simon, 2007)

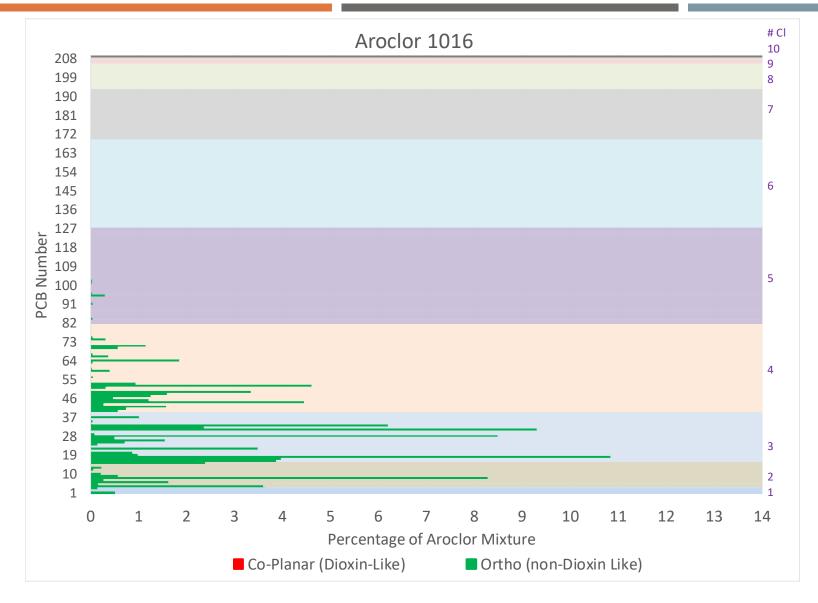
Aroclor 12548 higher risk

Aroclor 101670 lower risk

Indoor Air Screening Levels

EPA's Exposure Levels for Evaluating Polychlorinated Biphenyls (PCBs) in Indoor School Air (ng/m³)

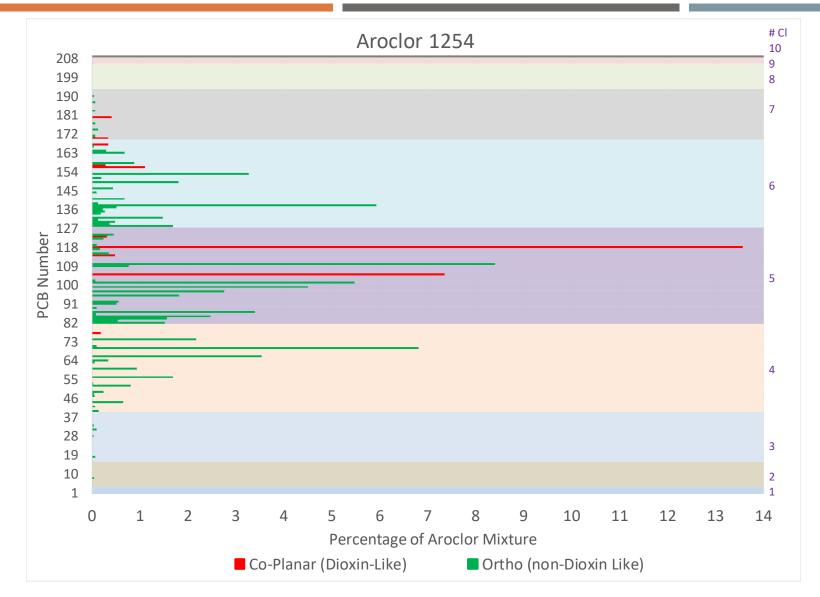
(https://www.epa.gov/pcbs/exposure-levels-evaluating-polychlorinated-biphenyls-pcbs-indoor-school-air)


Age 1-<2	Age 2-<3	Age 3-<6	Age 6-<12	Age 12-<15	Age 15-<19	Age 19+
100	100	200	300	500	600	500

EPA's Regional Screening Levels (ng/m³)

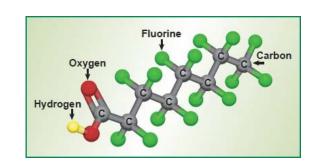
(https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables, TR=1E-06)

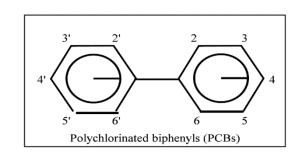
	High Risk	Low Risk	Lowest Risk
	(dust)	(evaporated)	(99.5% <4 Cl)
Residential	4.9	28	140
Industrial	21	120	610



PCB Congener	2,3,7,8- TCDD TEF
77	0.0001
81	0.0003
105	0.00003
114	0.00003
118	0.00003
123	0.00003
126	0.1
156	0.00003
157	0.00003
167	0.00003
169	0.03
170	0
180	0
189	0.00003

Composition data from ATSDR (2000) Toxicity Profile for PCBs


PCB Congener	2,3,7,8- TCDD TEF
77	0.0001
81	0.0003
105	0.00003
114	0.00003
118	0.00003
123	0.00003
126	0.1
156	0.00003
157	0.00003
167	0.00003
169	0.03
170	0
180	0
189	0.00003


Composition data from ATSDR (2000) Toxicity Profile for PCBs

Thank you for your attention!

Questions?

Also please write or call with any off-line questions

Stephen Zemba, PhD, PE (in MA)
Project Director
szemba@sanbornhead.com
T 802.391.8508

SANBORN | HEAD