

Data Usability & Presentation

What Regulators Want: Quality Site Assessments & Investigations Using the Conceptual Site Model Approach

Elizabeth Denly, TRC, Vice President, PFAS Initiative Leader & Chemistry Director Emily Wassmer, TRC, Group Manager & Senior Geologist

TRCcompanies.com

(in) 🕑

Data		

Why Do We Need to Evaluate the Lab's Data?

- Data may be used to make costly decisions
- Data may have potential to impact human health
- Need to confirm quality data available and appropriate to support decisions
- Need to determine potential low or high biases, potential uncertainties, potential false positive or false negative results

Even if the lab follows all method-required procedures, there can still be data quality/usability issues.

Effective Post-Sampling Laboratory Communications

- As soon as you get it!

• Why?

- Information is extremely time-sensitive –
 Anything requiring the laboratory to re-analyze samples dependent on hold time
- The longer you wait, the shorter the memories become, both in the lab and with the field personnel that collected the samples
- The longer you wait, the longer it takes a laboratory to produce requested documentation

Right list of analytes?

- □ All samples analyzed?
- □ Required reporting limits achieved?
- Does anything look unusual?

TRC

Evaluation Categories

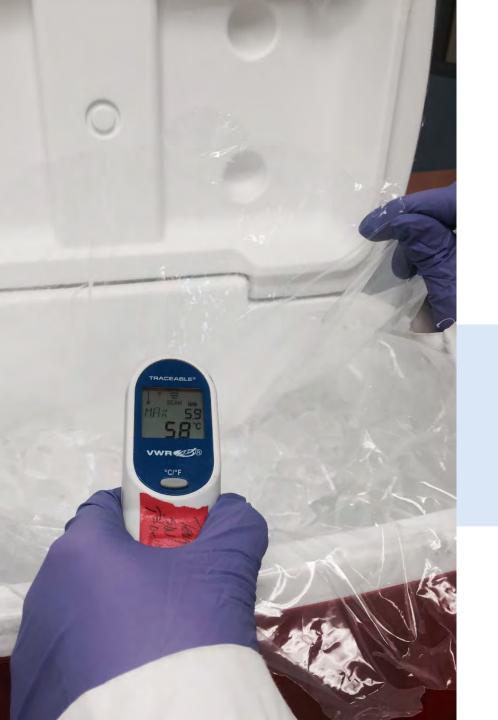
Laboratory Performance
 Field Performance

Matrix Interferences

Laboratory Performance	Field Performance	Matrix Interferences
Method Blanks	Field Blanks	Surrogates
Lab Control Samples	Sample Preservation	Internal Standards*
Holding Times	Field Duplicates	Matrix Spikes
Calibrations*		Laboratory Duplicates
Tunes*		

*Not typically included in Level 2 deliverables

What is Affected by Each Parameter?


Sample-Specific	Batch-Specific
Holding Time	Method Blanks
Sample Preservation	Lab Control Samples
Field Duplicates	Calibrations*
Surrogates	Tunes*
Internal Standards*	Field Blanks
Matrix Spikes	
Laboratory Duplicates	
*Not typically included	d in I evel 2 deliverables

*Not typically included in Level 2 deliverables

Organic Versus Inorganic Methods: Examples

Organic	Inorganic
Volatile Organic Compounds (VOCs)	Metals
Semivolatile Organic Compounds (SVOCs) Polycyclic Aromatic Hydrocarbons (PAHs)	Cyanide
Pesticides	Hexavalent Chromium
Polychlorinated Biphenyls (PCBs)	Anions
Dioxins/Furans	Hardness
Total Petroleum Hydrocarbons (TPH) Extractable Petroleum Hydrocarbons (EPH) Volatile Petroleum Hydrocarbons (VPH)	
Per- and Polyfluoroalkyl Substances (PFAS)	7

TRC

Sample Preservation & Integrity Was the Cooler Temperature $\leq 6^{\circ}$ C?

Typically noted on COC or separate cooler receipt form.

What if samples are delivered to the laboratory on the same day of collection and temperatures are outside of the acceptance criteria but samples are on ice?

Temperature too low: likely okay as long as waters not frozen Temperature too high: use professional judgment

- Metals
- PCBs or Dioxins
- VOCs (potential low bias)

Sample Preservation & Integrity

Was the Proper Chemical Preservative Used?

- Chemical Preservation of Aqueous Samples (examples)
 - Metals (nitric acid; pH <2)</p>
 - VOCs (hydrochloric acid; pH <2)
 - TOC (sulfuric acid; pH <2)</p>
 - Cyanide (sodium hydroxide; pH >12)
- Chemical Preservation of Soil/Sediment Samples
 - Most common: VOCs
 - Low-level: 5 grams with sodium bisulfate/DI water and magnetic stir bar
 - Low-level: 5 grams with DI water and magnetic stir bar
 - High-level: 5 grams with methanol

issue.

Most labs will note on cooler receipt form or in narrative IF there is an

Option to chemical preservation is EnCore[™] samplers.

Potential Issues with Lack of Preservation

Water VOCs not acid-preserved	Holding time reduced to 7 days
Water: other parameters not properly preserved	If >1 day to preservation, may have low bias
Soil VOCs not preserved	Detected results low bias Nondetect results rejected

Significant Data Quality Issue: Lack of Preservation for Soil Samples for VOCs

Sample Preservation & Integrity Air Samples

- Canister Vacuums
- Flow Controller Calibrations

Flow controller relative percent differences (RPDs) should be <20.

Want canister vacuum to be between 5-10" Hg; don't want it to be 0.

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure In Receipt I. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPI
L1414095-01	5ALLB-1	0383	#20 AMB	06/23/14	104424		-			Pass	3.3	3.4	3
L1414095-01	SALLB-1	999	6.0L Can	06/23/14	104424	L1413371-04	Pass	-29.2	-6.0	-	-		-
L1414095-02	6ALLB-2	0256	#16 SV	06/23/14	104424		-	-	-	Pass	3.1	3.2	3
L1414095-02	SALLB-2	969	6.0L Can	06/23/14	104424	L1413442-02	Pass	-29.6	-8.0	-	-		-
L1414095-03	9ALL8-1	0201	#16 AMB	06/23/14	104424		-	-	-	Pass	3.2	3.4	6
L1414095-03	9ALLB-1	1526	6.0L Can	06/23/14	104424	L1413371-03	Pass	-29.5	-7.4	-	-		-
L1414095-04	9ALLB-2	0201	#16 AMB	06/23/14	104424		-	-	-	Pass	3.		
L1414095-04	9ALLB-2	639	6.0L Can	06/23/14	104424	L1411852-01	Pass	-29.1	-4.6	-			
L1414095-05	252-1	0240	#16 AMB	06/23/14	104424		-	-	-	Pass	3.0	0.4	153
L1414095-05	252-1	1799	6.0L Can	06/23/14	104424	L1413293-01	Pass	-29.3	-22.1				12

Sample Preservation & Integrity Were Preparation & Analytical Holding Times Met?

- Need to check for <u>every</u> sample and <u>every</u> analysis
- Make sure lab provides both PREPARATION and ANALYSIS dates, when applicable.

Holding Times for Some Common Analyses

		Holding Times and Preserva	ation Requirements		
Parameter Reference Acceptance Criteria					
	Method	Aqueous	Solid		
VOCs	EPA 8260B	14 days (pH <2 with HCl) 7 days (un-preserved)	Low-level in 5 mL water: 48 hours to storage in freezer; 14 days to analysi Low-level in 5 mL NaHSO4: 14 days to analysis High-level in methanol: 14 days to analysis EnCore samplers: 48 hours to preservation for low-level and high-level analyses; above holding times for analysis apply		
SVOCs	EPA 8270D	7 days to extraction; 40 days from extraction to analysis	14 days to extraction; 40 days from extraction to analysis		
Metals (ICP-AES)	EPA 6010C	6 months to analysis (pH <2 with HNO ₃)	6 months to analysis		
Mercury	EPA 7470A, EPA 7471B	28 days to analysis (pH <2 with HNO ₃)	28 days to analysis		
Metals (GFAA)	EPA 7010	6 months to analysis (pH <2 with HNO ₃)	6 months to analysis		
Metals (ICP-MS)	EPA 6020A	6 months to analysis (pH <2 with HNO ₃)	6 months to analysis		
ТРН	EPA 8015B	GRO: 14 days to analysis (pH <2 with HCl) DRO: 7 days to extraction; 40 days from extraction to analysis	GRO: 14 days to analysis (methanol) DRO: 14 days to extraction; 40 days from extraction to analysis		
PCBs	EPA 8082A	1 year to extraction; 40 days from extraction to analysis	1 year to extraction; 40 days from extraction to analysis		
Pesticides	EPA 8081B	7 days to extraction; 40 days from extraction to analysis	14 days to extraction; 40 days from extraction to analysis		
Herbicides	EPA 8151A	7 days to extraction; 28 days to methylation; analysis immediately after methylation	14 days to extraction; 28 days to methylation; analysis immediately after methylation		

Collected

6/11/23

The Lab provides **dates prepared** and **dates analyzed**. The **collection** dates are on the COC.

Therefore, YOU can calculate whether holding times were met.

- (HT = 14 days from collection)

7 days lapse

• (HT = 40 days from extraction)

If Holding time missed: Data potentially biased low If Holding time missed by >2x holding time: Data may not be usable for project objectives

Analyzed

6/23/23

Evaluate Holding Times

Lab Sample ID: XX XX-1

VOCs: 14 days to analysis

SVOCs: 14 days to extraction; 40 days from extraction to analysis

Client Sample ID: -SS-01-TOP

Typical sample result summary form

- Number of VOCs reported
- Results, RLs, units
- Dilution results
- Collection date, prepared date, analysis date
- Percent solids (dry weight)
- Surrogate recoveries

Date Collected: 01/29/20 09:5 Date Received: 01/30/20 09:3			VOCs	<mark>in soil</mark>					:: Solid is: 79.9
Method: 8260C - Volatile Or Analyte	ganic Compounds by G Result Qualifier	C/MS RL	MDL	Unit	D	Prepared	Analyze	ed	Dil Fac
1,1,1-Trichloroethane	ND	5.75		ug/Kg	0	01/30/20 13:45	01/31/20 1	2:23	1
1,2-Dichlorobenzene	ND	5.75		ug/Kg	ø	01/30/20 13:45	01/31/20 1	2:23	1
1,1,2,2-Tetrachloroethane	ND	5.75		ug/Kg	夺	01/30/20 13:45	01/31/20 1	2:23	1
1,1,2-Trichloroethane	ND	5.75		ug/Kg	Q.	01/30/20 13:45	01/31/20 1	2:23	1

Client Sample ID: -SS-01 Date Collected: 01/29/20 09:5 Date Received: 01/30/20 09:3	i0 <	SVOCs	<mark>in soi</mark>	L				
Method: 8270D - Semivolati Analyte	e Organic Compounds Result Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND	2120	312	ug/Kg	0	01/31/20 14:48	02/03/20 21:31	10
bis (2-chloroisopropyl) ether	ND	2120	424	ug/Kg	¢	01/31/20 14:48	02/03/20 21:31	10
2,4,5-Trichlorophenol	ND	2120	574	ug/Kg	¢.	01/31/20 14:48	02/03/20 21:31	10
2,4,6-Trichlorophenol	ND	2120	424	ug/Kg	¢	01/31/20 14:48	02/03/20 21:31	10
2,4-Dichlorophenol	ND	2120	225	ug/Kg	ø	01/31/20 14:48	02/03/20 21:31	10
2,4-Dimethylphenol	ND	2120	511	ug/Kg	¢	01/31/20 14:48	02/03/20 21:31	10
A 4 50 A 10	100	00700	10700					

Why are Reporting Limits Important?

- What regulatory or screening criteria need to be achieved?
- Are the lab's reporting limits (RLs) below the regulatory or screening criteria?

	Groundwater Samples (ug/L)								
Analyte	Sample RL (method)	ME RAG/Residential	ME RAG/Construction Worker						
Benzo(a)pyrene	2.0 (8270) 0.1 (8270 SIM)	0.25	11,000						
Arsenic	5.0 (6010: ICP/OES) 0.5 (6020: ICP/MS)	0.52	5,800						
RAG = Remedial Action SIM = Selective Ion Moni									

If Reporting Limits (RLs) above screening criteria, may not be able to achieve objectives.

If RLs Above Screening Criteria, Why?

Analytical Limitation

- MEDEP RAGs or MCLs needed for PAHs? Request SIM
- Metals: may need ICP/MS (6020/200.8) instead of ICP/atomic emission spectroscopy (AES) (6010/200.7)

Dilutions Performed

- Is dilution reasonable?
- Does the lab note if it is due to non-target compounds?
- Is it due to an elevated extract volume?

Reminders

Laboratory	Field	Matrix	Sample-Specific	Batch-Specific
Performance	Performance	Interferences	Holding Times	Method Blanks
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples
Lab Control Samples	Sample Preservation	Internal Standards*	Field Duplicates	Calibrations*
•			Surrogates	Tunes*
Holding Times	Field Duplicates	Matrix Spikes	Internal Standards*	Field Blanks
Calibrations*		Laboratory Duplicates	Matrix Spikes	
Tunes*			Laboratory Duplicates	
* Not typically provid	ded in Level 2 deliver	rables	* Not typically provided	in Level 2 deliverables

Blanks: Method Blanks, Field Blanks, & Equipment Blanks

- Purposes:
 - Method Blank:

To check for potential lab contamination in the sample preparation and analysis step

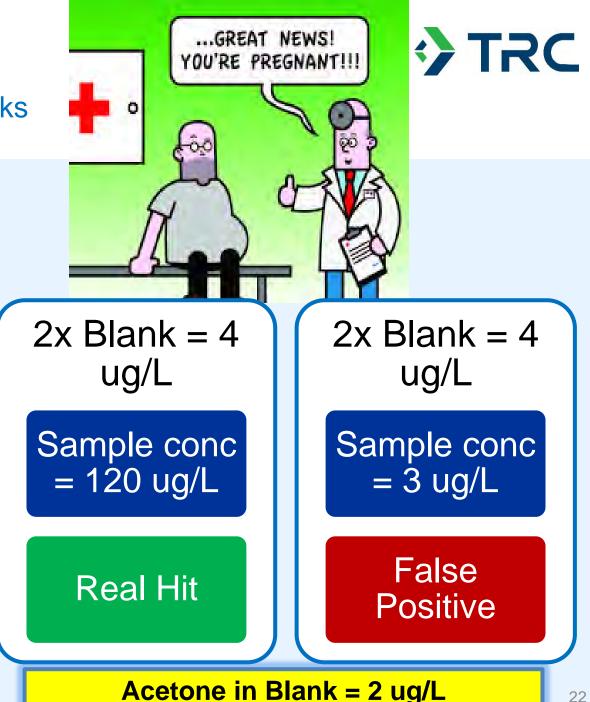
 Field/Equipment/Trip Blanks: To check for potential contamination from ambient field conditions, equipment, or shipping/storage

- Does each prep batch have its own method blank?
- Were field/equipment blanks collected at the required frequency?

Method Blank Data in Your Data Package

Lab Sample ID: MB 480-515744/2-A Matrix: Solid Analysis Batch: 515698							le ID: Method Prep Type: To Prep Batch: :	otal/NA
Analyte	Result Qualifier	RL	MOL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,2-Dichlorobenzene	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,1,2,2-Tetrachloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,1,2-Trichloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1.1-Dichloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,1-Dichloroethene	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,2,4-Trichlorobenzene	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,2-Dibromo-3-Chloropropane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	t.
1,2-Dichloroethane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1,2-Dichloropropane	ND	5.00		ug/Kg		01/31/20 10:30	01/31/20 11:48	1
1.3-Dichlorobenzene	ND	5.00	7 J	ua/Ka		01/31/20 10:30	01/31/20 11:48	1

Lab Sample ID: MB 480-515 Matrix: Solid Analysis Batch: 516280	713/1-A					le ID: Method Prep Type: To Prep Batch:	otal/NA
Analyte	MB IB Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Antimony	UN	14.7	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Arsenic	ND	1.96	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Barium	ND	0.490	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Beryllium	ND	0.196	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Cadmium	ND	0.196	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Chromium	ND	0.490	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Lead	ND	0.979	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Nickel	ND	4.90	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Selenium	ND	3.92	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Silver	ND	0.588	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Molybdenum	ND	0.979	mg/Kg		01/31/20 10:43	02/04/20 13:07	1
Thallium	ND	5.88	mg/Kg		01/31/20 10:43	02/04/20 13:07	1


Method blanks will be reported in data package.

- Each method
- Each day of analysis/extraction
- Results for all target analytes reported in samples

Blank Evaluation

Method Blanks, Field Blanks, & Equipment Blanks

- Is anything detected in the blank?
- Are there any potential false positives?
- General Rule of Thumb: If concentration in sample <2x the blank concentration, the result is potentially a false positive
- Common contaminants: methylene chloride, acetone, phthalates, 2-butanone

The lab method blank contains 130 ug/kg benzene. One of the field samples associated with this blank contains 250 ug/kg benzene. How would you evaluate the benzene result in this field sample?

A. Report as is since it is highly unlikely benzene is a laboratory contaminant.

- B. Flag the benzene result as a potential false positive since the concentration is <2x the blank concentration.</p>
- C. Report as is since the benzene result is > the blank concentration.

Reminders

Laboratory Performance	Field Performance	Matrix Interferences	Sample-Specific	Batch-Specific	
Performance		Interferences	Holding Times	Method Blanks	
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples	
Lab Control Samples	Sample Preservation	Internal Standards*	Field Duplicates	Calibrations*	
			Surrogates	Tunes*	
Holding Times	Field Duplicates	Matrix Spikes	Internal Standards*	Field Blanks	
Calibrations*		Laboratory Duplicates	Matrix Spikes		
Tunes*			Laboratory Duplicates		
* Not typically provide	ed in Level 2 deliverables	* Not typically provided in Level 2 deliverables			

Laboratory Control Samples (LCS)

- **Purposes:** To check the accuracy of the method in the absence of any matrix effects
- What are LCSs?
- Does each analytical or prep batch have its own LCS?

LCS Data in Your Data Package

Lab Sample ID: LCS 480-515790/2-A Matrix: Solid Analysis Batch: 515974				Client Sample ID: Lab Control Sam Prep Type: Total// Prep Batch: 5157					
	Spike	LCS	LCS			100	%Rec.		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Biphenyl	1660	1527		ug/Kg		92	59 - 120		
bis (2-chloroisopropyl) ether	1660	1519		ug/Kg		92	44 - 120		
2,4,5-Trichlorophenol	1660	1456		ug/Kg		88	59 - 128		
2,4,6-Trichlorophenol	1660	1402		ug/Kg		85	59.123		
2,4-Dichlorophenol	1660	1431		ug/Kg		86	61 - 120		
2,4-Dimethylphenol	1660	1390		ug/Kg		84	59 - 120		
2,4-Dinitrophenol	3320	2503		ug/Kg		75	41 - 146		
2,4-Dinitrotoluene	1660	1626		ug/Kg		98	63 - 120		
2,6-Dinitrotoluene	1660	1598		ug/Kg		96	66 - 120		
2-Chloronaphthalene	1660	1399		ug/Kg		84	57 - 120		
2-Chlorophenol	1660	1480		ug/Kg		89	53 - 120		
2-Methylnaphthalene	1660	1468		ug/Kg		88	59 - 120		
2-Methylphenol	1880	1483		ua/Ka		80	54 120		

Lab Sample ID: LCSSRM 480-515713/2-A	
Lab Sample ID: LCSSRM 480-515713/2-A Matrix: Solid	
Analysis Databa 540000	

Analysis Batch: 516280	0152	1.00	Sec. Aste				Prep Batch: 515713
	Spike	LCSSRM	LCSSRM				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	282	98.17	1000	mg/Kg		34.8	10.0 - 129.
Arsenic	155	117.1		mg/Kg		75.5	8 64.5 - 120.
Barium	439	343.6		mg/Kg		78.3	0 70.8 - 118. 2
Beryllium	192	158.5		mg/Kg		81.5	69.8 - 116. 7
Cadmium	61.5	49.35		mg/Kg		80.2	68.6 - 114. 3
Chromium	104	84.94		mg/Kg		81.7	67.8 - 126. 0
Lead	126	113.5		mg/Kg		90.1	70.9 - 127.

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCSs will be reported in data package.

- Each method
- Each day of analysis/extraction
- Percent recoveries for all target analytes reported in samples

Laboratory Control Sample (LCS) Evaluation

ACCURACY

- Were <u>all</u> target analytes reported?
- Were all recoveries within the acceptance limits?
- If LCS recoveries are outside limits:
 POTENTIAL LOW BIAS or
 - POTENTIAL HIGH BIAS

Affects the whole batch of samples prepared with the LCS.

Potentially unusable results:

- Organic methods: if recoveries are <10%</p>
- Inorganic methods: if recoveries are <30%

Question

If naphthalene recovers at 25% in the LCS (criteria are 40-140%), which of the following is true?

- A. Naphthalene concentrations in the associated samples are biased high.
- B. Naphthalene concentrations in the associated samples are biased low.
- C. Naphthalene results are unusable.

Reminders

Laboratory	Field	Matrix	Sample- Specific	Batch-Specific	
Performance	Performance	Interferences	Holding Times	Method Blanks	
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples	
Lab Control Samples	Sample Preservation	Internal Standards*	Field Duplicates	Calibrations*	
Holding Times	Field Duplicates	Matrix Spikes	Surrogates	Tunes*	
		Laboratory	Internal Standards*	Field Blanks	
Calibrations*		Duplicates	Matrix Spikes		
Tunes*			Laboratory Duplicates		
*Not typica	ally provided in Level 2 d	*Not typically provided	in Level 2 deliverables		

Matrix Spikes/Matrix Spike Duplicates (MS/MSDs)

- What are these?
- Were these analyses performed on a project sample?

MS/MSDs not applicable to the air matrix

Matrix spikes especially important for inorganic parameters:

- Metals
- Hexavalent chromium
- Total cyanide

MS/MSD Data in Your Data Package

Lab Sample ID: XXXXX-71 Matrix: Solid							Luent	Sampi	e ID: -SS-04-TOP Pr Type: Total/I
Analysis Batch: 516280	Sample	Sample	Spike	MS	MS				Prop Batch: 51571 %Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Antimony	ND	F1	51.8	39.06	F1	mg/Kg	¢	14	75_125
Arsenic	5.34		51.8	50.51		mg/Kg	-	87	75 - 125
Barium	46.1	F1	51.8	113.6	F1	mg/Kg	ø	130	75 _ 125
Beryllium	0.431		51.8	47.64		mg/Kg	Q	91	75 - 125
Cadmium	0.391		51.8	47.00		mg/Kg	Ģ	90	75 . 125
Chromium	17.8		51.8	67.55		mg/Kg	¢	96	75 - 125
Lead	60.0		51.8	105.9		mg/Kg	0	89	75 _ 125
Nickel	10.8		51.8	60.19		mg/Kg	¢	95	75 - 125
Selenium	ND		51.8	45.63		mg/Kg	¢	86	75_125
Silver	ND		12.9	11.59		mg/Kg	0	90	75 - 125
Molybdenum	ND		51.8	49.26		mg/Kg	ø	94	75_125
Thallium	ND		51.8	49,67		mg/Kg	¢	96	75 - 125
Vanadium	26.2		51.8	77.90		mg/Kg	¢	100	75.125
Zinc	140		51.8	182.5		mg/Kg	0	82	75-125

Lab Sample ID: XXXXXX-7 N	IS						Client	Sample	e ID; -SS-04-TOP Prep
Matrix: Solid									Type: Total/NA
Analysis Batch: 515698									Prep Batch: 515744
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1.1.1-Trichloroethane	ND	F2	163	141.0		ug/Kg	¢	86	(1 - 121
1.2-Dichlorobenzene	ND	F1 F2	163	68.64	F1	ug/Kg	¢	42	75 - 120
1,1,2,2-Tetrachloroethane	ND	F1 F2	163	96.08	F1	ug/Kg	¢	59	80_120
1,1,2-Trichloroethane	ND	F1 F2	163	112.8	F1	ug/Kg	G	69	78 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	ND	F2	163	125.3		ug/Kg	0	77	60 ₋ 140
ne									
1,1-Dichloroethane	ND	F2	163	140.2		ug/Kg	¢	86	73_128
1,1-Dichloroethene	ND	F2	163	138.5		ug/Kg	0	85	59 - 125
1,2,4-Trichlorobenzene	ND	F1	163	35.79	F1	ug/Kg	ø	22	64 _ 120
1,2-Dibromo-3-Chloropropane	ND	F1 F2	163	77.10	F1	ug/Kg	¢	47	63 - 124
1,2-Dichloroethane	ND	F2	163	132.4		ug/Kg	Q	81	77_122
1,2-Dichloropropane	ND	F2	163	130.8		ug/Kg	¢	80	75 - 124
1,3-Dichlorobenzene	ND	F1 F2	163	70.89	F1	ug/Kg	0	43	74_120

Was it performed on a sample from your project?

MS/MSDs will be reported in data package.

- Each method, if performed
- Percent recoveries for all target analytes reported in samples

Matrix Spikes/Matrix Spike Duplicates (MS/MSDs) TRC

- Were <u>all</u> target analytes reported?
- Were all recoveries within the acceptance limits?
- Were all RPDs within the acceptance limits?
- If MS recoveries are outside limits:
 - POTENTIAL LOW BIAS or
 - POTENTIAL HIGH BIAS

Organics: Affects the sample that was spiked.

Inorganics: Affects all samples in data set of similar matrix

Potentially unusable results:

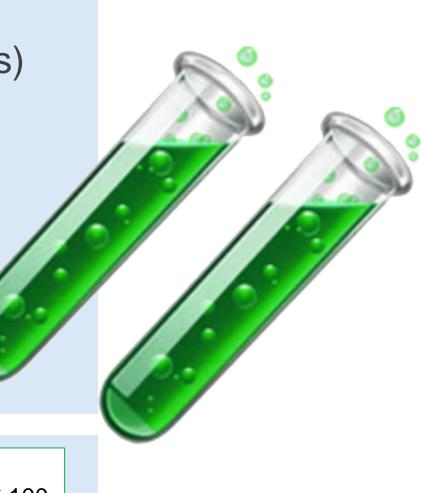
- Organic methods: if recoveries are <10%
- Inorganic methods: if recoveries are <30%

PRECISION

If arsenic recovers at 25% in the MS (criteria are 75-125%), which of the following is true?

- A. Arsenic concentration in the associated sample is biased high.
- B. Arsenic concentration in the associated sample is biased low.
- C. Arsenic result in the associated sample is unusable.

Reminders


Laboratory	Field	Matrix	Sample-Specific	Batch-Specific
Performance	Performance	Interferences	Holding Times	Method Blanks
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples
Lab Control Samples	Sample Preservation	Internal Standards*	Field Duplicates	Calibrations*
Holding Times	Field Duplicates	Matrix Spikes	Surrogates	Tunes*
Calibrations*		Laboratory	Internal Standards*	Field Blanks
Galibrations		Duplicates	Matrix Spikes	
Tunes*			Laboratory Duplicates	
*Not typica	ally provided in Level 2 de	*Not typically provided	in Level 2 deliverables	

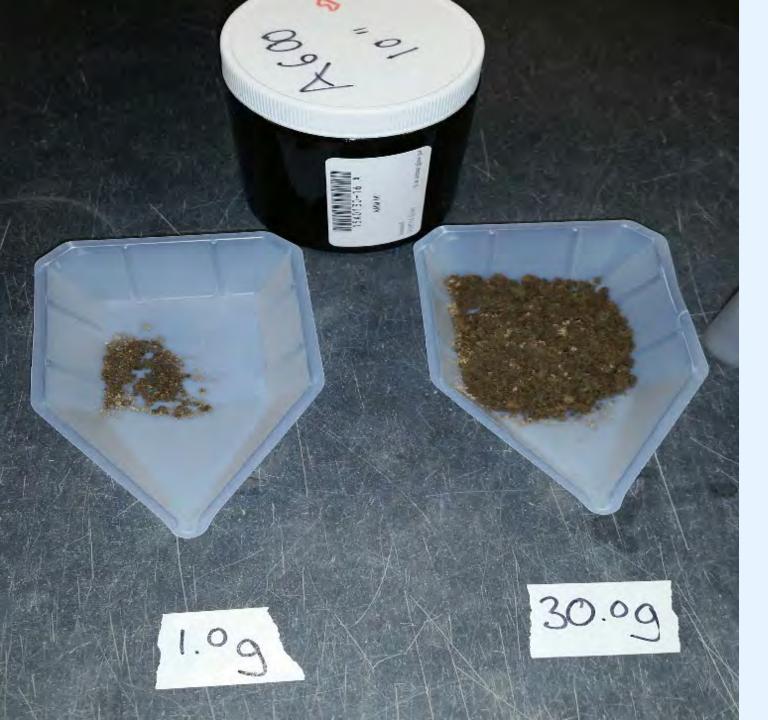
Field Duplicates

• Were relative percent differences (RPDs) within the acceptance criteria?

- What are the acceptance criteria?
- Typical (when results are >2x the RL):
 - RPD ≤30 for aqueous and air samples
 - RPD ≤50 for solid samples

RPD = |X1 - X2| / (Average X1, X2) * 100RPD = |Difference between two results|/ (Average of two results)* 100

Some Potential Field Duplicate Scenarios



	Compound	RL (ug/L)	Sample (ug/L)	Field Dup (ug/L)	RPD			
Both results <2x the RL:	Benzene	1	1.8	0.3 J	52.6			
aqueous or air samples	When both results are <2x the RL, look at the absolute difference between the results. Acceptable absolute difference: <rl 1.8 - 0.3 = 1.5: UNACCEPTABLE</rl 							
Both results <2x the RL: soil/sediment samples	Analyte	RL (mg/kg)	Sample (mg/kg)	Field Dup (mg/kg)	RPD			
	Lead	2	3.9	2.1	60			
•	When both results are <2x the RL, look at the absolute difference between the results. Acceptable absolute difference: <2x the RL 3.9 - 2.1 = 1.8: ACCEPTABLE							
	Analyte	RL (mg/kg)	Sample (mg/kg)	Field Dup (mg/kg)	RPD			
One detected result and	Benzene	0.01	0.2	0.01 U	NC			
one nondetect result	Lead	2	3	2.0 U	NC			
	Benzene: absolute difference: $0.2 - 0.01 = 0.19$ (>2xRL so UNACCEPATABLE) Lead: $3 - 2 = 1$ (<2x RL so ACCEPTABLE)							

Field Duplicate Reporting Recommendations

Scenario	Reporting Recommendations
Both results nondetect	Use the lower of the two RLs
One result detected and one result not detected	Use the detected result
Both results detected and precision acceptable	Use the average or higher of the two results
Both results detected and precision not acceptable	Use the higher of the two results

Where is Variability Coming From?

- Sample Non-homogeneity
- Sampling Variability
- Laboratory Variability

Reminders

Laboratory		Matrix		Batch-Specific		
Performance	Field Performance	Interferences	Holding Times	Method Blanks		
Method Blanks	Field Blanks	Surrogates	Sample Preservation	Lab Control Samples		
Lab Control	Sample		Field Duplicates	Calibrations*		
Samples	Preservation	Internal Standards*	Surrogates	Tunes*		
Holding Times	Field Duplicates	Matrix Spikes	Internal Standards*	Field Blanks		
		Laboratory				
Calibrations*		Duplicates	Matrix Spikes			
Tunes*			Laboratory Duplicates			
*Not typic	ally provided in Level 2 de	liverables	*Not typically provided in Level 2 deliverables			

Surrogates (Organic Analyses Only)

What are they?

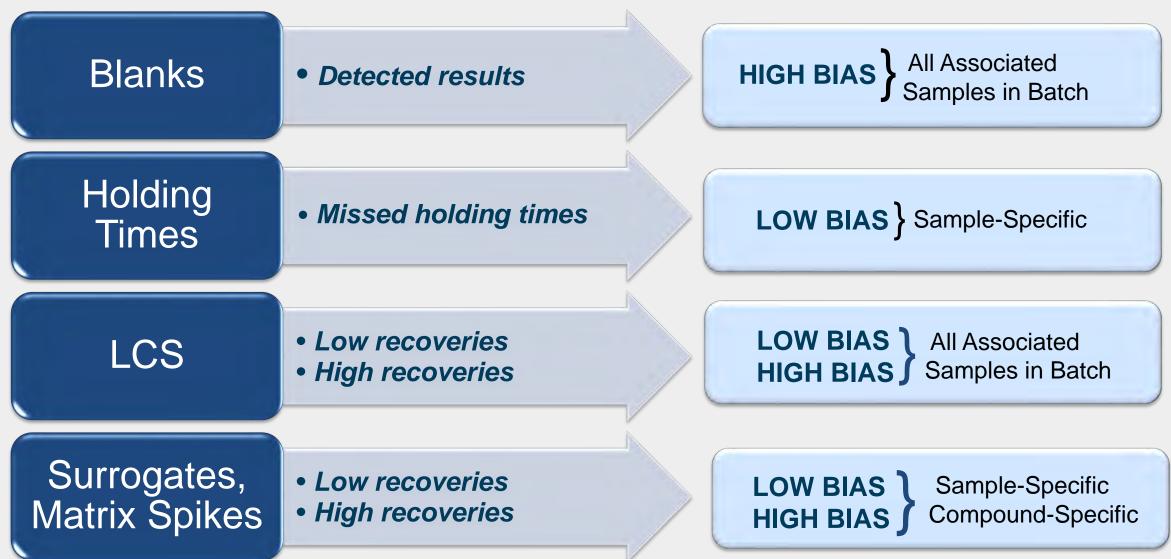
Examples: VOCs: Toluene-d8 SVOCs: Phenol-d5 PCBs: Decachlorobiphenyl

Surrogate Data in Your Data Package

opropylbenzene ethyl acetate	ND			
ethyl acetate			8.52	
	ND		42.6	
ethyl tert-butyl ether	ND		8.52	
ethylcyclohexane	ND		8.52	
ethylene Chloride	ND		8.52	
yrene	ND		8.52	
trachloroethene	ND		8.52	
luene	ND		8.52	
ns-1,2-Dichloroethene	ND		8.52	
ns-1,3-Dichloropropene	ND		8.52	
chloroethene	ND		8.52	
chlorofluoromethane	ND		8.52	
nyl chloride	ND		8.52	
lenes, Total	ND		17.0	
irrogate	%Recovery	Qualifier	Limits	
luene-d8 (Surr)	98		71 - 125	
2-Dichloroethane-d4 (Surr)	106		64 - 126	
Bromofluorobenzene (Surr)	95		72.126	
bromofluoromethane (Surr)	107		60 - 140	
	1		1	

Analyte	Result	Qualifier	RL	
Di-n-octyl phthalate	ND		1090	
Dibenz(a,h)anthracene	ND		1090	
Dibenzofuran	ND		1090	
Diethyl phthalate	ND		1090	
Dimethyl phthalate	ND	1	1090	
Fluoranthene	305	J	1090	
Fluorene	ND		1090	
Hexachlorobenzene	ND		1090	
Hexachlorobutadiene	ND		1090	
Hexachlorocyclopentadiene	ND		1090	
Hexachloroethane	ND		1090	
Indeno[1,2,3-cd]pyrene	175	J	1090	
Isophorone	ND		1090	
N-Nitrosodi-n-propylamine	ND		1090	
N-Nitrosodiphenylamine	ND		1090	
Naphthalene	ND		1090	
Nitrobenzene	ND		1090	
Pentachlorophenol	ND		2120	
Phenanthrene	ND		1090	
Phenol	ND		1090	
Pyrene	278	J	1090	
Surrogate	%Recovery	Qualifier	Limits	
2,4,6-Tribromophenol	105		54 - 120	Acid
2-Fluorobiphenyl	94	B/	N 60_120	
2-Fluorophenol	92		52-120	Acid
Nitrobenzene-d5	75	B/	N 53_120	/ 1010
p-Terphenyl-d14	106	B/	N 79-130	
Phenol-d5	88		54_120	Acid

Biases Due to Surrogate Recoveries


- Were all recoveries within the acceptance limits?
- If surrogate recoveries are outside limits:
 - POTENTIAL LOW BIAS or
 - POTENTIAL HIGH BIAS
- Sample-specific
- Effect on results dependent on method

Method	Effect on Data
VOCs	If 1 surrogate out: affects all target VOCs
SVOCs	If ≥ 2 B/N surrogates out but ≥10%: affects all B/N compounds If ≥ 2 acid surrogates out but ≥10%: affects all acid compounds If 1 B/N or 1 acid surrogate <10%: affects associated compounds
Pesticides & PCBs	Affects all target pesticides or PCBs: dependent on which column surrogate is outside limits

• Potentially unusable results: if recoveries are <10%

Let's Summarize Potential Biases

Data Presentation

Goals

- Supplement the text
- Information is accessible and easy to digest
- Concepts and conclusions are clear

Your audience matters!

Data Tables

Anatomy of a Basic Analytical Data Table

1. Title

- 2. Sample Information
- 3. Analysis (method) & individual analytes

4. Units

- 5. Regulatory Criteria
- 6. Analytical Data (Results) including qualifiers
- 7. Notes

	Summary	ofAnabtic	Ta al Results for	ible 4 Indoor Air	- Sa	mples – Fe	der 14	ar y 2023				
			174 M	ain Street				,				
				lassachuse	11 s							
			uple Location:	1A-01		1A-02		1A-03				-84
			Sample Name: ab Sample ID :	1.23 662	.06	L2308662	.07	L230866	2.08	IA-4 1.2308663		DUP-1 1230866
			Sample Date:	2 . 7/202		2/17/200		2/17/20		2/17/20		2/17/20
			Commercial	_								
Analysis	Analyte	14	*lainteinil*									Field D
TO-15	_	—		L		L						
	Vinyl chloride	ug/m3	1.3	0.511	U	0.511	U	- 7	U	0.511	U	0.511
	Bromomethane	ug/m3	4.4	0.777 2.490	U	0.777	U	3,370	U	6,410	U	0.777 5.960
	Acetone 1,1-Dichloroethene	ug/m3 ug/m3	180	0.793	U	0.793	U	0.793	U	0,793	U	0.793
	Methylene chloride	ug/m3	530	1.74	U	1.74	U	1.74	U	1.74	U	1.74
	trans-1,2-Dichloroethene	up/m3	53	0.793	U	0.793	U	0.793	U	0.793	U	0.793
	1,1-Dichloroethane	ua/m3	710	0.809	U	0.809	U	0.809	U	0.809	U	0.809
	Methyl tert-butyl ether	ug/m3	2,700	0.721	U	0.721	U	0.721	U	0.721	U	0.721
	2-Butanone (MEK)	ug/m3	4,400	5.96		6.13		7.14		8.67		8.70
	eis-1,2-Dichloroethene	ug/m3	5.3	0.793	U	0.793	U	0.793	U	0.793	U	0.793
	Chloroform	ug/m3	3	0.977	U	0.977	U	0.977	U	0.977	U	0.977
	1,2-Dichloroethane 1,1,1-Trichloroethane	ug/m3	4,400	1.09	0	1.09	U	0.809	U	0.809	U	1.09
	Enzene	ug/m3 ug/m3	11	5.0	U	5.11	U	12.9	0	22.1	0	22.6
	Carbon tetrachloride	ug/m3	1.9	1.26	U	1.26	U	1.26	U	1.26	U	1.26
	1,2-Dichloropropane	ua/m3	0.6	0.924	U	0.924	U	0.924	U	0.924	U	0.924
	Bromodichloromethane	ug/m3	0.65	1.34	U	1.34	U	1.34	U	1.34	U	1.34
	Trichloroethene	ug/m3	1.8	1.07	U	1.07	U	1.07	U	1.07	U	1.07
	1,4 Dioxane	ug/m3	2.3	0.721	U	0.721	U	0.721	U	0.721	U	0.721
	eis-1,3-Dichloropropene	ug/m3	2.9(1)	0.908	U	0.908	U	0.908	U	0.908	U	0.908
	4-Methyl-2-pentanone	ug/m3	2,700 2.9(1)	23.0		22.5	U	6.68	U	165	U	152
	trans-1,3-Dichloropropene 1,1,2-Trichloroethane	ug/m3 ug/m3	0.72	1.09	0	1.09	U	1.09	U	1.09	U	1.09
	Toluene	ug/m3	4,400	23.6	0	24.9	0	54.3		99.9		99.9
	Dibromochloromethane	uu/m3	0.48	1.70	U	1.70	U	1.70	U	1.70	U	1.70
	1,2-Dimmoethane (Ethylene dimm	ug/m3	0.038	1.54	U	1.54	U	1.54	U	1.54	U	1.54
	Tetrachbroethene	ug/m3	4.1	1,400		1,090		2,990		12,000		10,800
	Chlorobenzene	ug/m3	44	0.921	U	0.921	U	0.921	U	0.921	U	0.921
	Ethylhenzene	ug/m3	880	69.9		73.8		248		721		634
	m.p-Xykne Bromoform	ug/m3	88(2) 10	283	U	2.07	U	825 2.07	U	3,070	U	2,720
	Styrene	ug/m3 ug/m3	20	0.852	U	0.852	U	0.852	U	0.852	U	0.852
	1,1,2,2-Tetrachloroethane	ug/m3	0.2	1.37	U	1.37	U	1.37	U	1.37	U	1.37
	Xylenes (total)	ug/m3	88	3.78		402		1,210		4,240		3,730
	o-Xylene	ua/m3	88(2)	95.1		103		381		1,170		1,010
	1,3-Dichlorobenzene	ug/m3	710	1.20	U	1.20	U	1.20		1.20	U	1.20
	1,4 Dichlorobenzene	ug/m3	1.7	1.20	U	1.20	U	1.20	U	1.20	U	1.20
	1,2-Dichlorobenzene	ug/m3	710	1.20	U	1.20	U	1.20	U	1.20	U	1.20
	1,2,4-Trichlorobenzene Naphthalene	ug/m3	3.4	1.48 2.08	U	1.48	U	1.48	U	1.48	U	1.48
	Hexachlorobutadiene	ug/m3 ug/m3	46	2.13		2.19		2.13				

Using Shading to Convey Information

Analysis	Analyte		Sam	ple Location:	Å	A-2.5 A-5 B-3 BC-6						BC-6 CD-6-1											
		1.0		Sample ID:	A	28	A5-11.5	B3-12'	B3-14	1	В	3		BC-6 (3)	BC-6				c	0-6-1			
		1.200		e Depth (fr.): Sample Date:	0-1 1/34/3012	1-3	12.5	12 7/19/2007	14 7/19/2007	0-1 1/24/2012	1-3 1/34/0012	4-6 1/04/0013	6-8 1/04/0610	3 2/25/2009	0-1 1/24/2012	0-0.5	0.5-1 10/18/2011	1-2 10/18/2011	2-3 10/18/2011	3-5 10/18/2011	5-6 10/18/2011	6-7 10/18/2011	7-9 10/18/20
		S-1/GW-2								1000				-				-		-	Hot Spot		
PH ng/kg)	C9-C13 Aliphatics C19-C23 Aliphatics C11-C22 Aromatics** Acenaphthysee Anthracene Benzo(a)anthracene Benzo(b)fuoranthene Benzo(b)fuoranthene Benzo(b)fuoranthene Chrysne Dhenzo(b, h)nettracene Fhoramhene Fhoramhene Indeno(1, 2, 3-cd)pyrene Methylingshitalene, 2- Naphthalene	1,000 3,000 1,000 1,000 600 7 2 7 1,000 70 70 0,7 1,000 1,000 7 80 20	3,000 5,000 3,000 3,000 400 400 400 400 400 400 400 400 20	5,000 5,000 5,000 5,000 300 300 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 3,000 2,000 3,000 3,000 3,000 3,000 5,0000 5,0000 5,0000 5,00000000	NA NA 0.22 U 0.32 0.39 1.5 1.2 1.7 0.45 0.64 1.6 0.22 U 2.4 0.26 0.54 0.22 U 0.22 U	NA NA NA 3.0 0.21 9.6 55 50 120 3.1 24 120 3.1 24 13	NA NA NA 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.33 U 0.58 0.33 U 0.58 0.33 U 0.58 0.33 U 0.58 0.33 U 0.58 0.33 U 0.58 0.33 U 0.33 U 0.58 0.59 0.59 0.50 U 0.50	0.93 1.6 0.85 2.1 0.33 0.74 2.8 0.33 0.33 0.33 0.33 0.44 1.4 1.5	NA NA NA 033 U 033 U 033 U 033 U 033 U 033 U 1.0 0.33 U 1.5 0.33 U 0.33 U	NA NA NA 021 U 021 U 021 U 021 U 021 U 033 0.57 0.39 0.33 0.75 0.21 U 0.21 U 0.21 U 0.21 U	NA NA 0.18 U 0.18 U	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N
CBs ng/kg)	Phenanthrene Pvrene Total PCBs	500 1,000 1	1,000 3,000 4	3,000 5,000 4	2.5 1.8 0.13 U	88 130 0.14	11 1 02 U	3.7 4.8 0.15 U	0.89 1.3 0.12	0.53 0.80 0.12 U	0.18 U 0.18 U 0.11 U	NA NA	NA NA	NA NA	NA NA NA	NA NA 0.12 U	NA NA 0.11 U	NA NA 0.16	NA NA 0.33	NA NA	NA NA 3,100	NA NA	NA NA
fetab, to mg/kg)		20 20 1,000 90 70 1,000 200 200 600 100 400 1,000	30 20 3,000 200 100 3,000 600 30 1,000 200 700 3,000	30 50 5,000 100 5,000 600 30 1,000 200 700 5,000	3.2 U 5.3 NA NA 0.32 U 12 61 NA 10 NA NA NA	3.1 U 25 NA NA 3.2 14 320 NA 14 NA NA NA NA	1.6 U 2.3 51 0.36 0.33 U 13 22 0.0662 9 0.33 U 24 38	5.4 U 5.4 U 6.29 0.36 U 11 84 0.206 10 0.36 U 25 62	5.3 U 26 51 0.38 0.68 17 200 0.481 33 0.35 U 25 190	3.0 U 722 NA NA 0.76 13 76 NA 9.1 NA NA NA NA	2.7 U 1.7 U NA NA 0.27 U 13 24 NA 12 NA NA NA	NA 55 U NA NA NA NA NA NA NA NA	NA 4.7 NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA
A - Sample I/A - Not ap S - No Mas - Compour alues in Be PH - Volati	igams per kilagana (dry weight or perts per te ose andyed for the bleed analyte. spitchle. aDEP standards som for this analyte of was not deterned at specifical quantitation (in his discute the company) was deterned. In 1904 and 1979/16 (pyr second cond se mus her herdnams Hydrogarborn.	nî:	and KP standard	s/criteria.		Repearnts a samp PCB hot spot (ma	ole (hat will be ex-	be beyond the live: assated or capped a ar need to be saking	is part of the wetis	nd mitigation, or l		compliance.											

Repesents a sample that will be excavated or capped as part of the wetland mitigation, or for MCP or TSCA compliance

PCB hot spot (excavated)

Additional risk driving locations that need to be addressed before MCP closure (capped).

Field Data Tables:

Example 1 – Drain Investigation

		TABLE 2 – Drain	Investigation Summa	ary
Drain ID	Drain Type	Location	Connection	Notes
D-303	Floor	First Floor	D-303B / MH #1	None.
D-303A	Floor	First Floor	D-303B / MH #1	2 pipes: 4" top pipe blocked; 6" bottom pipe connects to MH #1.
D-303B	Trench	First Floor	MH #1	None.
D-304	Floor	First Floor	Unknown	Drain located under debris pile and could not be inspected. Likely connects to D-303A.
D-305	Floor	First Floor	Sealed	None.
D-2019-1	Floor	Basement (Pump Room)	MH #00 / Outfall #2	None.
D-2019-2	Floor	Basement (Turbine Room)	MH #5 / Outfall #2	None.
D-2019-3	Floor	Basement (Turbine Room)	MH #5 / Outfall #2	None.
R-1	Roof	First Floor	MH #00	None.
R-2	Roof	First Floor	D-303B / MH #1	None.

Field Data Tables: Example 2 – Well Data

Table 4 Monitoring Well Construction Information and Groundwater Elevation Data Former Pad-Mounted Electrical Transformer 214 Jóth Street Charlestown, Massachusetts

Well ID	Total Depth (ft bgs)	Screened Interval (ft bgs)	Monitoring Well Elevation (top of PVC riser)*	Measurement Date	Depth to Groundwater (ft btor)	Groundwate Elevation
			h	6/29/2020	11.75	87.65
				7/10/2020	13.30	86.10
MWSB-2	14	4-14	99.40	12/2/2020	9.50	89.90
				3/2/2021	13.60	85.80
				6/9/2021	9.05	90.35
				6/29/2020	11.68	88.32
		5-15	100.00	7/10/2020	11.60	88.40
MWSB-3	15			12/2/2020	10.08	89.92
	1.			3/2/2021	12.85	87.15
				6/9/2021	10.63	89.37
1				6/29/2020	14.05	85.95
	1			7/10/2020	13.87	85.63
MWSB-6	15	5-15	99.50	12/2/2020	7.55	91.95
				3/2/2021	14.00	85.50
				6/9/2021	9.61	89.89
1 Distance of 1		0.000		6/29/2020	12.05	87.95
A GUICE A A GUICE				7/10/2020	12.00	\$8.00
MWSB-8/MWSB- 8R**	12	2-12	100.00	12/2/2020	9.50	90.50
OL.				3/2/2021	13.35	86.65
				6/9/2021	9.32	90.68

Notes:

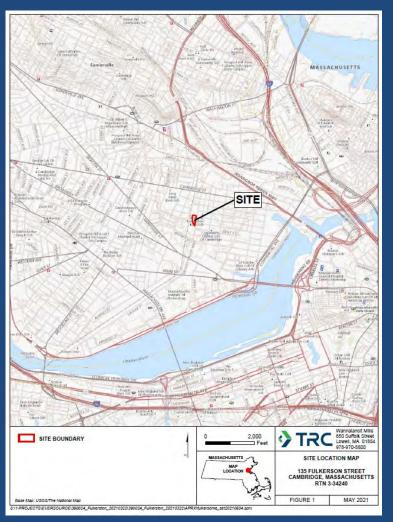
* Elevation data are relative to an arbitrary on-Site benchmark assigned an elevation of 100 feet.

** Monitoring well MWSB-8 was destroyed during LRA activities in August 2020 and was replaced with monitoring well MWSB-8-R, which was installed in the same location in November 2020.

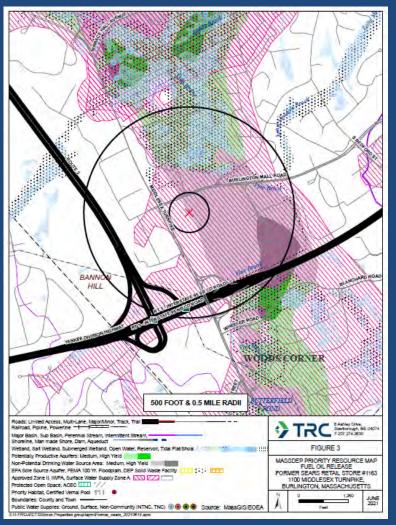
ft: feet

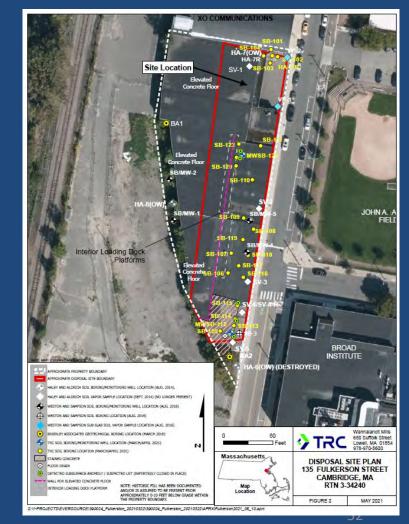
bgs: below ground surface

btor: below top of (PVC) riser

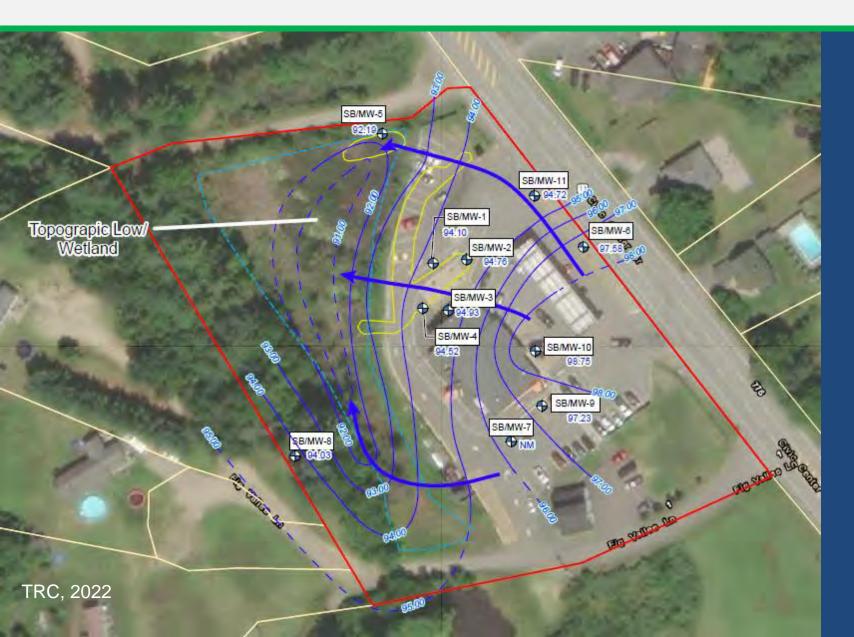

PVC: polyvinyl chloride

Figures & Visuals


Typical Assessment Figures: The Usual Suspects

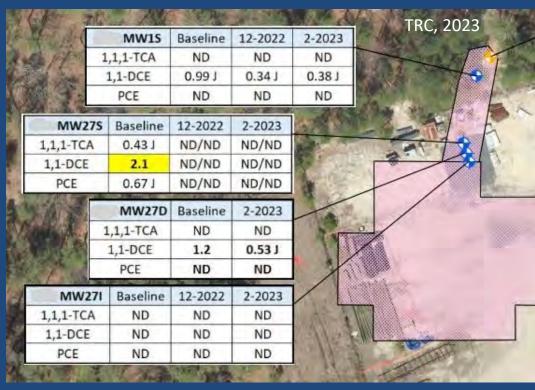

Site Locus Map

Sensitive Receptors Map



Site Plan

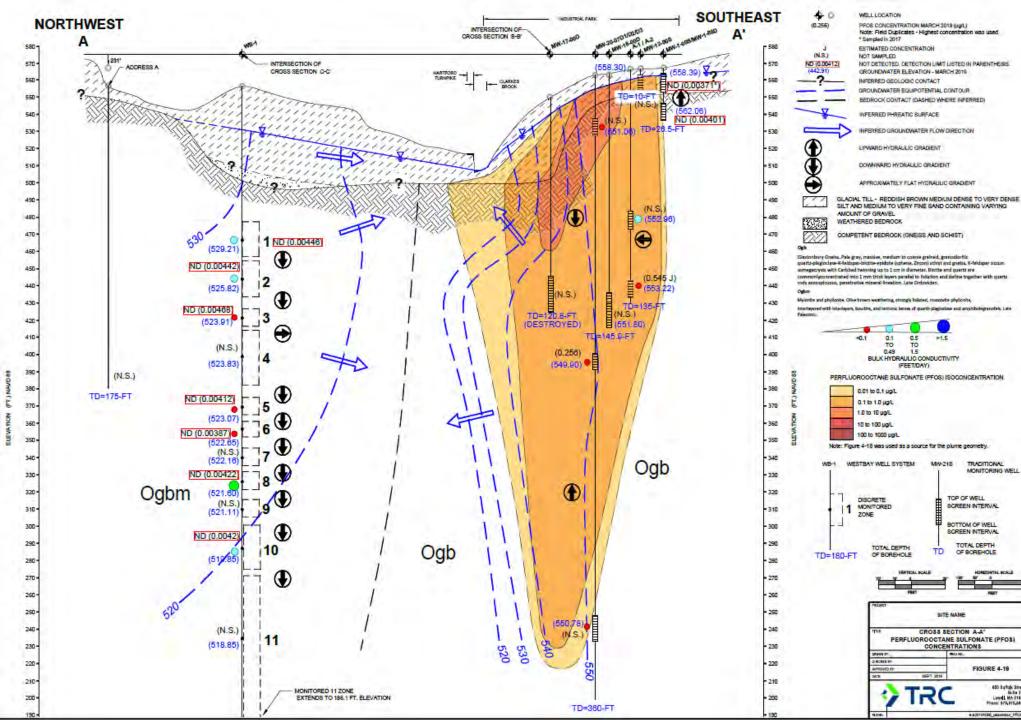
Groundwater Contour Plan


- Further refine the CSM
- Review in tandem with analytical data
- Informs & guides additional assessment activities
- Identify potential exposures

TRC

Color-Coded Sample Locations

- Above or below a particular threshold
- Easily discern the areas of concern and extent of impacts
- Useful for most types of sampling media

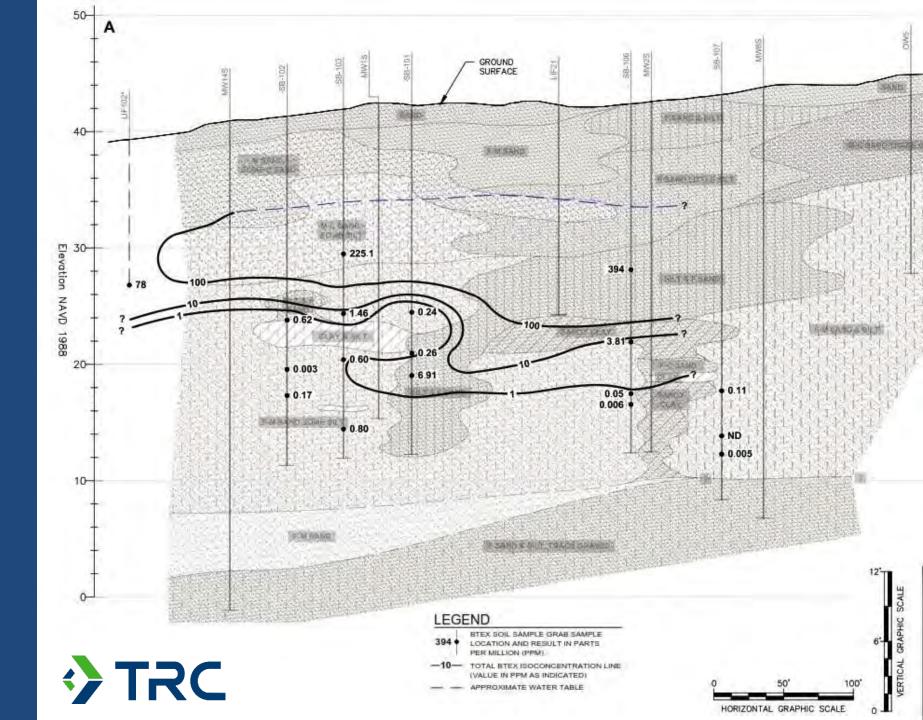


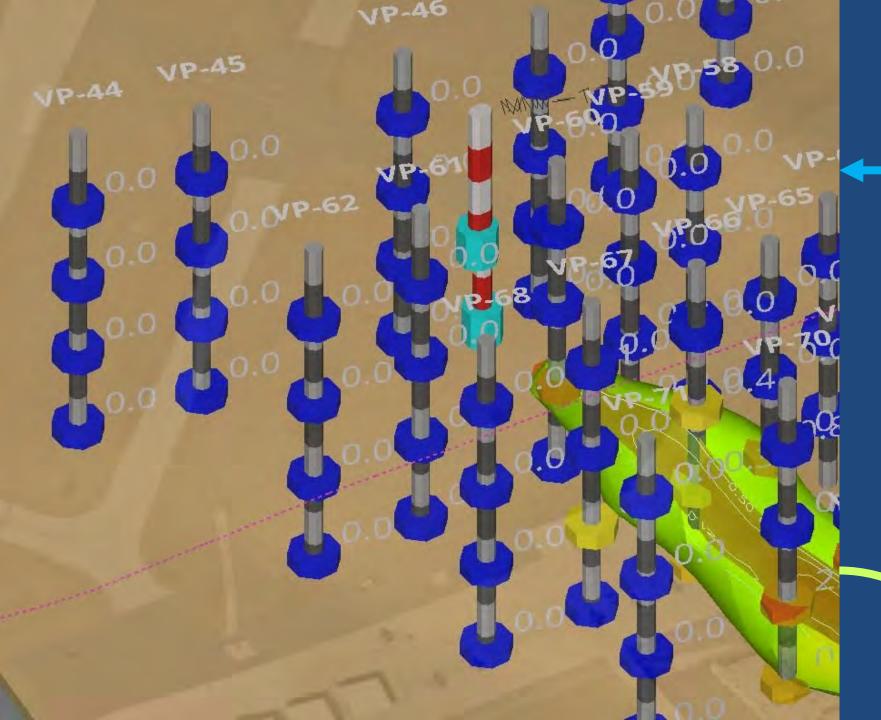
TRC

Data Boxes & Isopleths

- Present analytical data and site layout information in one visual
- Easily discern the areas of concern and extent of impacts
- Useful for soil & groundwater

⇒ TRC

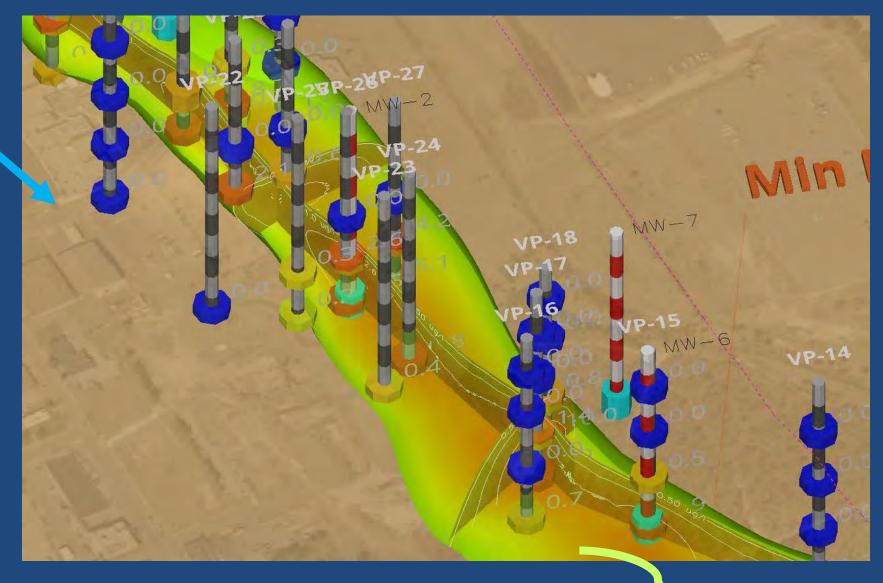

Cross-Sections: Example 1 – **PFOS Plume in** GW


450 Sufficie Street

Luniell MA 01854 Press: \$78,910,8400

Salta 55

Cross-Sections: Example 2 – BTEX in Soil


Well-defined upgradient extent

3D Mapping – Plume in GW

Plume continues

3D Mapping – Plume in GW

Lateral extent

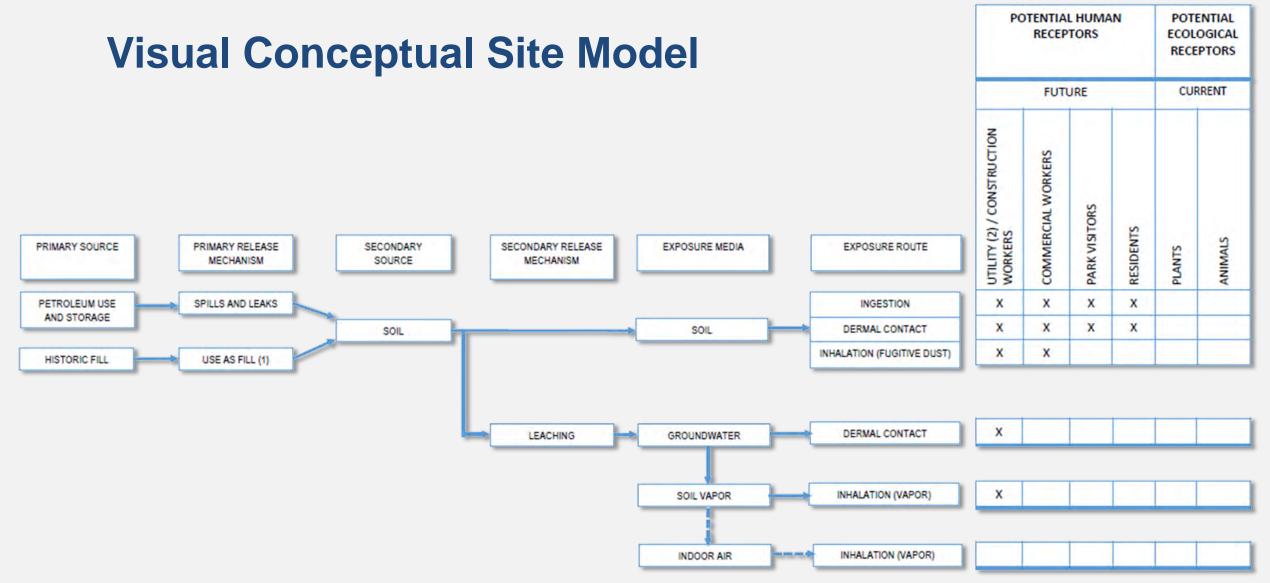
STRC

Plume continues

VP-05 04 0.0 MW4 VP-08 VP-06 VP-07 VP-20

MW-8

⇒ TRC


3D Mapping – Plume in GW

MW-9

VP-21

Downgradient extent

Questions?

Thank you

Elizabeth Denly, ASQ CMQ/OE

P: 978-656-3577 | E: <u>EDenly@TRCCompanies.com</u> <u>www.TRCcompanies.com</u>

Emily Wassmer, PG/LG, LSP

P: 207-298-0785 | E: <u>EWassmer@TRCCompanies.com</u> <u>www.TRCcompanies.com</u>