

What Regulators Want: Quality Site Assessments & Investigations Using the Conceptual Site Model Approach

May 17, 2023 - Portland, Maine

Understanding Collected Data

Presented by: Allison Drouin, PG, LG Rick Vandenberg, PG, LG

Framework

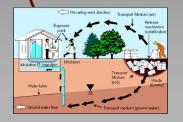
Initial Site Assessment

Site Investigation Planning

Implementation & Understanding Data

Data Usability and Presentation

Evolving the CSM



The second of th	May 20, 2008	
Section 1 Sectio	Below is a listing of the numers, titles, signatures, and signature de	tes of efficials approving this
The Summer Segregation 15 Summer Segregatio		
	and behalf at In Byer.	G/5//8
The Court of Action (1997) Act		
The Court of Action (1997) Act	1911 O	6/5/18
Index (State 1977) per Manager Land State The Propositionary Land Land State The Propositionary Land Land Land Land Land Land Land Land		
Index (State 1977) per Manager Land State The Propositionary Land Land State The Propositionary Land Land Land Land Land Land Land Land		
City of Personal Recognition Development ARTICLE AND DAMAS 5-31-2018 Ultima Develop. CO., PO Delte Victor Assembly Co., P. C	Beden of Blais	
City of Personal Recognition Development ARTICLE AND DAMAS 5-31-2018 Ultima Develop. CO., PO Delte Victor Assembly Co., P. C		
City of Personal Recognition Development ARTICLE AND DAMAS 5-31-2018 Ultima Develop. CO., PO Delte Victor Assembly Co., P. C		
City of Personal Recognition Development ARTICLE AND DAMAS 5-31-2018 Ultima Develop. CO., PO Delte Victor Assembly Co., P. C	Zella Herri	6/4//2
Clima Denis, CO, PO Delica Associage, \$5.C Perjot Manager	Nolls Honig	tuy.
Clima Denis, CO, PO Delica Associage, \$5.C Perjot Manager		
Credens Associates (ACC Project Minusper	Wisen Deven	5-01-0018
Al Warm		
	- There Hope	
	Credon Associates, LLC Quality Control Manager	

Presentation Overview

- Field Implementation &
 Documentation steps for ensuring quality
- Demobilization/DataVerification
- Field Documentation and some lessons learned
- Navigating Lab Reports and some Red Flags

Field Implementation

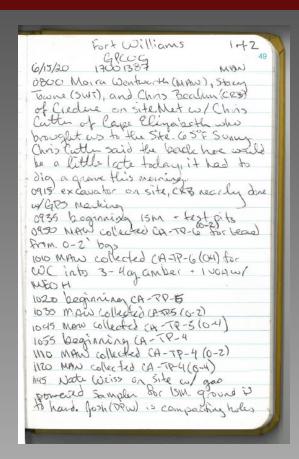
Field Preparation

- Review the Work Plan. What are the objectives?
- Order field equipment and sample containers
- Coordinate subcontractors (drillers, geophysics)

 Special considerations for certain parameters

Field Implementation

- Documentation
- Communication
- Decision Process

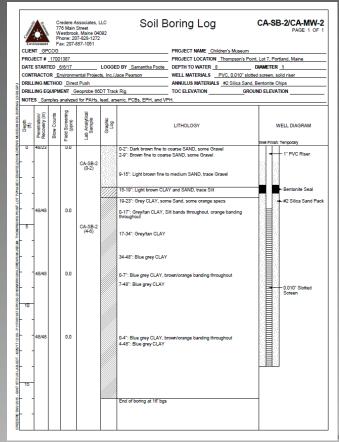

Field Implementation

	Sample Summary Table									
Matrix	Location ID	Justification	QC Samples	Field Analyses	Analyses					
Soil	SB-1	To assess VOC source area, depth of greatest contamination	Duplicate	PID	VOCs (8260) VPH (MassDEP)					
5011	SB-2	To assess surface soil	MS/MSD	PID	VOCs (8260) VPH (MassDEP) PAHs (8270) Metals (6020)					
Aguagus	MW-1 To assess extent of		None	DO, ORP, pH, sp. cond,	VOCs (8260) VPH (MassDEP)					
Aqueous	MW-2	plume	Duplicate, MS/MSD	temp, turbidity	VOCs (8260) VPH (MassDEP)					

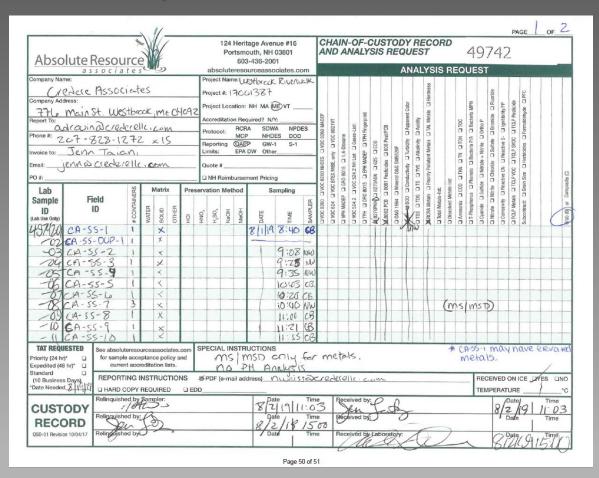
Field Logbook

- Date
- Times
- Personnel & subcontractors
- Weather
- Calibration details
- Types of equipment
- Objectives
- Health and safety notes
- Deviations from the Work Plan
- Sample details (times, ID, QC samples, bottleware, preservation)

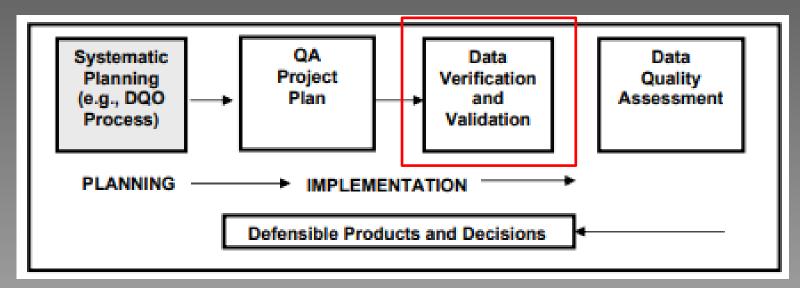
Field Forms


PROJECT NAME:	LOW FLOW SAMPLING LOG CREDERE ASSOCIATES, LLC Kleen Laundry DATE: 4-3-20-23 Favirances						
PROJECT NUMBER:	21001623 LOCATION ACTIVITY Creditor Associates LLC START: 1045						
SAMPLE LOCATION ID:	MW-3-25 END: 1130						
WELL DATA:	([∠] MEASURED [∠] TOP OF WELL WATER LEVEL EQUIPMENT USED:						
WELL DEPTH (ft):	5.41 [] HISTORICAL [] TOP OF CASING [] ELECT. COND. PROBE [] FROM GRADE [] FLOAT ACTIVATED PROBE						
WATER DEPTH (ft):	4.05 [] HISTORICAL [] [] PRESSURE TRANSDUCER						
DEPTH OF PUMP INTAKI WELL MATERIAL: [×] PVC [] SS []	E (N):						
[] [] Subme [] Bladde [] Hand [] Hand [] For the control of	er pump YSIG_strk o sonde with _25 c.mt. flow defi [2] DEIONIZED WATER pump YSI Sonde SN: _22_A_10_14-4 [2] POTABLE WATER steet HOPE YSIG_strk o Handset [3] TSP SOLUTION						
FIELD ANALYSIS DATA:							
TIME TEMP (°C)	PH COND. ORP COND. (mV) (mg/l) (ntu) (mL/min) (ft) (indicate stable flow rate)						
1105 7.1 6	(87) 1.789, 35.9 (.03 3.62 10 1.14 Been purg (1052) 1.771 48.7, 7.11 4.87 100 4.33 Jenest purg (1052) 1.701 1.755 55.4 1.57 100 4.33 Jenest purg (1062) 1.701 1.705 55.4 1.57 100 4.33 Jenest purg (1062) 1.701 1.705 55.4 1.57 100 4.34 Jenest purg (1062) 1.701 1.705 55.4 1.57 100 4.34 Jenest purg (1062) 1.701 1.705 55.4 1.57 100 4.54 Jenestown OK 1.701 1.705 61.0 0.58 1.34 100 4.54 Jenestown OK 1.701 1.705 61.0 0.58 1.14 100 4.52 Jenestown OK						
3%	40.1 3% ±10 10%, <0.5 <5 (5) (6) (6) (6)						
TIME SAMPLE ID PRESERVATION METHOD # TYPE 112C MW-7-25 HCI 3 40 MC VOA VOCS							
[]0.	DB GAL/FT (1* DIAM). x length of water column = 7. \$6. \$ Isable flow not achieved, sampled via no-purge: [] 16 GAL/FT (2* DIAM). Total Well Volume: 0.05 9 65 GAL/FT (4* DIAM). Total Purge Volume: 0.75 9 5 GAL/FT (2* DIAM). \$6 well volume: \(\frac{\pi_0}{2} \) \$9 SAMPLER \$7. \$1. \$1. \$1. \$1. \$1. \$1. \$1. \$1. \$1. \$1						

	Soil Vapor Sampling Log Credere Associates, LLC, 776 Main Street, Westbrook, ME 04092								
P	ROJECT NAME: Klein Loundy DATE: 4-3-2023								
	PROJECT NUMBER: 7 10 0 16 23 Environment								
	ROJECT ADDRESS 1 Founding St Lebenon Ntt								
	IELD STAFF COMPLETING SURVEY: Lauren Kaija A Allisan Drovin								
WEATHER: 40°F, partly synthy Vapor Point Sampling ID (A V) - (0 1255 Probe depth (in):									
									S
L	eak Detection Method Hollum Shroud Water Dam Other: Can Size: 1 L Can ID: 2134 Controller ID: 0877 Controller Rate: 100 ML N.W								
,	Carl Size.								
	Purge rate Tracer Result PID Result CO2 O2 Start Time Initial Vacuum End Time End Vacuum (Umin) (ppm) (pph) (%) (%)								
	Ablain 7.024 1313 -30.2 1.84								
	Sample Analysis TO-15 TO-15 SIM APH Other Notes: (cracks in slab, crawl space, material inventory in vicinity, floor staining, floor drains, utilities, windows, air handling equipment)								
	us hubbles inwater due observed purged wi per pump for								
	~30sec before somple collection								
=	Probe depth (in):								
	ampling Method Exterior Grab Temp point Permanent pin								
	ask Detection Method Hellum Shroud Water Darn Other:								
	Can Size: 1 L Can ID: 3498 Controller ID: 02264 Controller Rate: 00 km M in								
	Purgorate Tracer Result PID Result CO2 O2 Start Time Initial Vacuum End Time End Vacuum (fymin) (ppm) (ppb) (%) (%)								
	+ L/nm - 7.024 - 1313 -30.2 1322 0.96								
	Sample Analysis TO-15 TO-15 SIM APH Other Notes: (cracks in slab, crawl space, material inventory in vicinity, floor staining, floor drains, utilities, windows, air handling equipment)								
_	fanor Point Sampling ID (AVD-II) Probe depth (in):								
	ampling metrics								
Leak Detection Method Helium Shroud Water Dam Uther: Can Size: 1 L Can ID: 1934 Controller ID: 690 8 Controller Rate:									
	Purgerate Tracer Result PID Result CO2 O2 Start Time Initial Yacuum End Time End Vacuum ((m) (ppin) (ppin) ((m) (%) (%)								
	1329 -29.26 1335 -1.58								
	Sample Analysis TO-15 TO-15 SIM APH Other Notes: (cracks in slab, crawl space, material inventory in vicinity, floor staining, floor drains, utilities, windows, air handling equipment)								

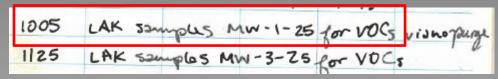

Field Forms

			st.A.	Δ.		SITE INFORMATION	WELL SPECIFICATIONS
				ON THE		Project Number/Client:	Well Depth (feet bgs);
						17001387/GPCOG	14
		9	A CONTRACTOR			Site Location:	Screen Length (feet):
			Environm	ent t		Thompson's Point Lot 7 Date Start/Finish:	10 (14-4)
L		Cred	lere Associa	tes LLC		June 6, 2017	Annulus materials:
Box	ring/W	ell ID:				Credere Representative:	DRILLING EQUIPMENT
						Samantha Foote	Equipment (make/model):
,	· ·	0 0	100			CONTRACTOR	Lele DT Track rice
(74-	20-7	10H-1	nw-2	-	Drilling Contractor:	Casing/Auger/Core Diameter:
						Environmental Projects, Inc.	
						Foreman:	Casing Material:
						Jack Pecurson	
٦			Sample Info	rmation			
ا ۔	le				PID	Soll December	Classification
Depth	Sample No/Typ	Pen/Rec			(ppm)	Soil Description and	Classification
á	S S	(inches)	(feet)	Blows (/6")	(RF=1.0)		
ł	۸۸	48123	0-4		0.0	0-2": Dark brown F	-C SAND, SOME
ŀ	CH-	00-70	0-2)	_		16, ravei	
ŀ		1-	 	_	-	2-911: Brown F-C SAND	, some Erravel
ı		48148	1-0		0.0	h Itil' Light land	30.00
5	CA-	8-5	(A-10		0.0	9-15": Light brown F	-m sano, trace
ľ				_		61010	
Į						15-1911: Light brown	CLAY and SAND
Ţ		48/48	8-12		0.0	trace Silt	
4							
0		-				19-23" Errey CLAY, S	oma sanoi, soma
- 1		A C I LAG	130 1			orounge spect	-
1	_	48/48	17-110				12000000
}		<u> </u>	-		-	0-17" Grey/tan CLAY	with crange
5						bandung throughou	ut and silf bands
7	_					throughout	
ı					_	17 2 All Groundtein 11	DAT
ľ						17-34" Grey tan U	TIY
						34-48": Brullgrey S	AR
0						D 711: 80 0 0 000	
-						0-7": SAA WITH OFCUT	ge boundura-1
1						prown banduna	0.
H		-				brown bandung 7-48": SAA, no bro	Word Laronn
5	_	\vdash				banewra.	-1-1 0.0
1							
r		 		-		0-4" SAA WITT dare 1	rown I orcura-
r				-			
Γ						4-48" 8AA, no san	dina
em	arks :	nd Well D	etails		-	200 04 1000	
15	011	hio:	1.00		4	end of boring at 11	0, 10CK2
	41	- LACI	11117	talled	h	· ·	0-
				P Seal			
3	100	201105	" Leno	ym at	21 h	(M)	
rati	fication	lines represe	ent approxin	ate boundaries	between soi	Types, transitions may be gradual. Water level	
adir	ags hav	e been made	at times and	under condition	ns stated. Fl	furtuations may occur due to other factors than those	
eses	nt at the	time measus	rements wer	e made.			Page 1 of
GS :	= belov	ground surf	ace; S = spl	it-spoon sample	(blow count	ts provided if SPT conducted); U = thin-wall Shelby	
be s	ample	hydraulic-ac	tuated, fixed	l piston samples	rutilized); V	= in-situ vane shear test (undisturbed and	
100	usuj; V	on = weigl	nt of hamme	r; wor = Wei	gnt of rods;	WOC - Weight of casing.	Boring No: CA-SB-2
_							
							CA-MW-Z


Chain of Custody

Demobilization

Not just packing up and driving home



Data Verification

Field Documentation Completeness

- Review field forms to ensure all form fields are completed
- Review field notes for completeness and consistency with field forms
- Review chain of custody for consistency with field forms and logs

MPLE DA	174	PRESERVATION	SAR	MPLE CONTAINER	LABORATORY
TIME	CAMPLEID		07.		ANALYSIS
05	MW4-25	HC	3	40ml VOA	VOCE
_			_		
			_		
			_		

17803-01	CA-MW-4	4.3.2023	(130	C, U	ASD	×	
-02	MW-1-25	1	1005		LAK	x	
-03	MW-3-25		1125		LAK		

Data Verification

Input Completeness

- Review complete field documentation package to ensure compliance with the Work Plan.
 - Did all the planned samples get collected?
 - If not, were the deviations well documented?
 - Were all the required analyses and QC samples requested on the chain of custody?

Field Documentation - Lesson Learned #1

Field Duplicate Correlation – Building Materials

- 100+ PCB samples were submitted of bulk products (building materials) with numerous field duplicates for QC.
- Field crew took field notes and wrote down duplicate pairs in the field notes.

Sample Location	Matrix	Sample ID	Total PCBs (mg/kg)
PCB-12	Dod paint	PCB-12	10,600
PCB-12	Red paint	DUP-1	11.2
DCD 43		PCB-42	10.9
PCB-42	Gray paint	DUP-7	11,200

 Results indicated a major difference in concentrations between these two duplicate pairs.

Field Documentation - Lesson Learned #2

Field Duplicate Correlation – Soil Samples

- 25 borings drilled on a remote island site in NE. 50 soil sample for a variety of analysis including metals. 5 duplicates.
- Field crew took field notes and wrote down duplicate pairs in the field notes.

Sample Location	Matrix	Sample ID	Total Lead (mg/kg)
Doring 12	Black Urban	CA-SB-12 (0-2)	4,520
Boring 12	Fill	SB-DUP-1	390
24	Black Urban	CA-SB-24(0-2)	378
Boring 24	Fill	SB-DUP-2	3,390

 Results indicated a major difference in concentrations between these two duplicate pairs. NOW WHAT??

Laboratory Reports

Level	1	2	3	4
Analytical Result Forms	X	X	Х	X
Case Narrative	X	Χ	Х	X
Chain of Custody	X	Х	Х	X
Basic QC (blanks, LCS/LCSD, MS/MSD, dups)		X	Х	X
Prep and lab logs			X	Χ
Tuning			X	X
Instrument calibration (ICV/CCV)				X
Raw data (analyst logs, chromatograms, sequences, etc.)				X

Parts of a Laboratory Report

Absolute Resource associates

Allison Drouin CREDERE Associates 776 Main Street Westbrook, ME 04092

PO Number: None Job ID: 40678 Date Received: 6/16/17

Project: Children's Museum 17001387 Attached please find results for the analysi

Unless otherwise noted in the attached ren Resource Associates' Quality Assurance P LISEPA SW-846 LISEPA Methods for Che for the Examination of Water and Wastewa contained in this report pertain only to the s

Absolute Resource Associates maintains of

We appreciate the opportunity to provide la enclosed report, please contact the laborat

Absolute Resource Associates

Principal General Manager

New Hampshire 1732 124 Heritage Avenue | Portsmouth, NF

ANALYTICAL REPORT

Lab Number 1 1832577

Client

Report Date:

320 Forbes Boulevard, Mansfield, MA, 02048-1806. 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Credere Associates 11 C 776 Main Street Westbrook MF 04092

ATTN: Allison Drouin

3992 SAXTON RIVER RD., GRAFTON Project Number Not Specified

Certifications & Approvals: MA (M-MA030), NH NELAP (2002), CT (PH-0141), DoO (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (300), NJ (MA015), NY (11027), NC (883), OH (CL 106), PA (86-02099), RI (LA000209), TI (I-A000209), TI (I-A000209

Review your project Total Access Have a Question? Expert

Results relate only to the items tested and the sample(-

· LINKS ·

Serial_No:0907

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

TestAmerica Job ID: 180-768 Client Project/Site: 43999

Absolute Resource Associate 124 Heritage Ave

Portsmouth, New Hampshire

Attn: Mr. Aaron DeWees

Authorized for release by 4/26/2018 4:24:21 PM

Debra Bowen, Project Manag (412)963-2445 debra.bowen@testamericainc

NALYTICAL SERVICES

May 10, 2018

Ms. Allison Drouin Credere Associates, LLC 776 Main Street Westbrook, ME 04092

Katahdin

RE: Katahdin Lab Number:

Mr. Galen Nickerson Project Manager Sample Receipt Date(s): April 26, 2018

Please find enclosed the following information

- * Report of Analysis (Analytical and/or Field)
- . Quality Control Data Summary
- * Chain of Custody (COC)

A copy of the Chain of Custody is included in the paginated report. If requested, the original COC is attached as an addendum to this report.

Should you have any questions or comments concerning this Report of Analysis, please do not hesitate to contact the project manager listed above. The results contained in this report relate only to the submitted samples. This cover letter is an integral part of the ROA.

We certify that the test results provided in this report meet all the requirements of the NELAC standards unless otherwise noted in an attached technical narrative or in the Report of Analysis

We appreciate your continued use of our laboratory and look forward to working with you in the future. The following signature indicates technical review and acceptance of the data.

Please go to http://www.katahdinlab.com/cert for copies of Katahdin Analytical Services Inc. current certificates

P.O. Box 540, Scarborough, ME 04070

Tel: (207) 874-2400

Fax: (207) 775-4029

600 Technology Way, Scarborough, ME 04074

www.katahdinlab.com

KATAHDIN ANALYTICAL SERVICES

Leslie Dimond - Quality Assurance Officer

Katahdin Analytical Services 0000001

Cover Page

Sample Association or Summary

	Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
	WC-CMT-1	Solid	4/13/2018 11:10	43999-001	
	7			→	Pesticides in soil by 8081
	'				PCBs in soil by 8082
					Acid & Base/Neutral Extractables in solid by 8270
					EPH in solids by MADEP Method
					Solid Digestion for ICP Analysis
					Silver in solids by 6020
					Arsenic in solids by 6020
6 1 15					Barium in solids by 6020
Sample ID					Cadmium in solids by 6020
Sample 15					Chromium in solids by 6020
					Mercury in solids by 7471
and Lab ID					Lead in solids by 6020
aria Lab ib					Selenium in solids by 6020
					Percent Dry Matter for Sample Calc by SM2540B,G
					Herbicides (subcontract)
					VOCs in solids by 8260
					VPH in solids by MA DEP Method
					Total cyanide in solids by 9014
\					Ignitability of Solid Samples by SW1010 pH in solids by SW9045C
\					Sulfide-soluble in solid by SM4500-S2 D+F
\	WC-CMT-2	Solid	4/13/2018 11:25	43999-002	Suilide-soluble in solid by Sivi4500-52 D*F
\	WC-CIVIT-2	Solid	4/13/2010 11.23	43999-002	Pesticides in soil by 8081
\					PCBs in soil by 8082
					Acid & Base/Neutral Extractables in solid by 8270
					EPH in solids by MADEP Method
					El II III Joha Dy III DEL Motrod

Alpha Sample ID	1	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2317803-01		CA-MW-4	WATER	1 FOUNDRY ST, LEBANON, NH	04/03/23 11:30	04/05/23
L2317803-02		MW-1-25	WATER	1 FOUNDRY ST, LEBANON, NH	04/03/23 10:05	04/05/23
L2317803-03		MW-3-25	WATER	1 FOUNDRY ST, LEBANON, NH	04/03/23 11:25	04/05/23
L2317803-04		MW-4	WATER	1 FOUNDRY ST, LEBANON, NH	04/03/23 12:25	04/05/23
L2317803-05		MW-6-25	WATER	1 FOUNDRY ST, LEBANON, NH	04/03/23 12:50	04/05/23
L2317803-06		MW-2-25	WATER	1 FOUNDRY ST, LEBANON, NH	04/03/23 13:45	04/05/23
L2317803-07		MW-2-25-DUP	WATER	1 FOUNDRY ST, LEBANON, NH	04/03/23 13:45	04/05/23
L2317803-08		TRIP BLANK	WATER	1 FOUNDRY ST, LEBANON, NH	04/03/23 00:00	04/05/23

Case Narrative

Absolute Resource

associates

Case Narrative Lab # 43999

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, on day of sampling, at 8 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

No exceptions noted.

Laboratory Control Sample Results

VOC: The MLCS10595 did not meet the acceptance criteria for dichlorodifluoromethane and carbon disulfide. Since <10% of the compounds were outside of the acceptance criteria, reanalysis is not required. EPH: The LCS10585 did not meet the acceptance criteria for naphthalene. The relative percent difference between the LCS and LCSD10585 was outside the acceptance criteria for naphthalene. Since <10% of the compounds were outside of the acceptance criteria, reanalysis is not required. The relative percent difference between the LCS and LCSD10585 was outside the acceptance criteria for 2-methylnaphthalene, acenaphthene, and acenaphthylene. The percent recovery for these analytes in each QC parameter was within the acceptance criteria. No impact to the data suspected.

SVOC: The LCS/D10593 did not meet the acceptance criteria for pentachlorophenol. Since <10% of the compounds were outside of the acceptance criteria, reanalysis is not required.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

No exceptions noted.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt. Container information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP according parameter sureless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively identified Compounds (Titles), if requested, are reported for compounds (identified to be present and are not part of the methodiporal Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g., more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is boilded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

rlease contact Project Management at 800-024-9220 with any questions.	

Sample Results

Project Number: 21001623

SAMPLE RESULTS

Report Date: 04/12/23

Lab ID: Client ID: Sample Location: L2317803-01 CA-MW-4

1 FOUNDRY ST, LEBANON, NH

 Date Collected:
 04/03/23 11:30

 Date Received:
 04/05/23

 Field Prep:
 Not Specified

Sample Depth:

atrix: Water

Analytical Method: 1,8260D Analytical Date: 04/12/23

Analyst:

04/12/23 03:39 MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75	_	1
Chloroform	ND		ug/l	0.75	_	1
Carbon tetrachloride	ND		ug/l	0.50	-	1
1,2-Dichloropropane	ND		ug/l	1.8	-	1
Dibromochloromethane	ND		ug/l	0.50	_	1
1,1,2-Trichloroethane	ND		ug/l	0.75	-	1
Tetrachloroethene	14		ug/l	0.50	-	1
Chlorobenzene	ND		ug/l	0.50	_	1
Trichlorofluoromethane	ND		ug/l	2.5	-	1
1,2-Dichloroethane	ND		ug/l	0.50	-	1
1,1,1-Trichloroethane	ND		ug/l	0.50	_	1
Bromodichloromethane	ND		ug/l	0.50	-	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	-	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	_	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	-	1
1,1-Dichloropropene	ND		ug/l	2.5	_	1
Bromoform	ND		ug/l	2.0	_	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	-	1
Benzene	3.6		ug/l	0.50	-	1
Toluene	ND		ug/l	0.75	_	1
Ethylbenzene	ND		ug/l	0.50	-	1
Chloromethane	ND		ug/l	2.5	-	1
Bromomethane	ND		ug/l	1.0	-	1
Vinyl chloride	ND		ug/l	1.0	-	1
Chloroethane	ND		ug/l	1.0	-	1
1,1-Dichloroethene	ND		ug/l	0.50	-	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	-	1

Project ID: CMT @ TP 16001326

Job ID: 43999

Sample#: 43999-001 Sample ID: WC-CMT-1

Matrix: Solid Percent Dry: 89.7% Results expressed on a dry weight basis.

Sampled: 4/13/18 11:10		Reporting		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	5.9	2.3	ug/g	5	AGN 4/19/18	10591	4/21/18	3:30	SW3051A6020A
Barium	35	5	ug/g	5	AGN 4/19/18	10591	4/26/18	17:16	SW3051A6020A
Cadmium	< 0.5	0.5	ug/g	5	AGN 4/19/18	10591	4/21/18	3:30	SW3051A6020A
Chromium	14	5	ug/g	5	AGN 4/19/18	10591	4/21/18	3:30	SW3051A6020A
Lead	26	2.3	ug/g	5	AGN 4/19/18	10591	4/21/18	3:30	SW3051A6020A
Mercury	< 0.13	0.13	ug/g	1	AJD 4/16/18	10573	4/17/18	12:09	SW7471B
Selenium	< 5	5	ug/g	5	AGN 4/19/18	10591	4/21/18	3:30	SW3051A6020A
Silver	< 2.3	2.3	ua/a	5	AGN 4/19/18	10591	4/21/18	3:30	SW3051A6020A

Sample#: 43999-002 Sample ID: WC-CMT-2

Matrix: Solid

Percent Dry: 85.7% Results expressed on a dry weight basis.

Sampled: 4/13/18 11:25		Reporting		Instr Dil'n	Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst Date	Batch	Date	Time	Reference
Arsenic	4.1	1.9	ug/g	5	AGN 4/19/18	10591	4/21/18	3:37	SW3051A6020A
Barium	30	4	ug/g	5	AGN 4/19/18	10591	4/26/18	17:23	SW3051A6020A
Cadmium	< 0.4	0.4	ug/g	5	AGN 4/19/18	10591	4/21/18	3:37	SW3051A6020A
Chromium	10	4	ug/g	5	AGN 4/19/18	10591	4/21/18	3:37	SW3051A6020A
Lead	45	1.9	ug/g	5	AGN 4/19/18	10591	4/21/18	3:37	SW3051A6020A
Mercury	< 0.16	0.16	ug/g	1	AJD 4/16/18	10573	4/17/18	12:11	SW7471B
Selenium	< 4	4	ug/g	5	AGN 4/19/18	10591	4/21/18	3:37	SW3051A6020A
Silver	< 1.9	1.9	ug/g	5	AGN 4/19/18	10591	4/21/18	3:37	SW3051A6020A

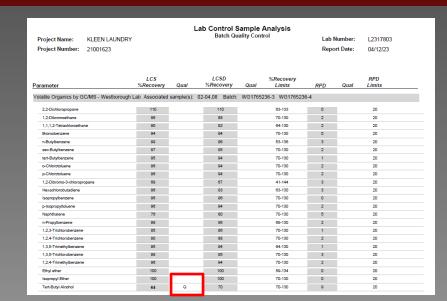
Sample Results - Lab Qualifiers

Job ID: 64965 Sample#: 64965-008 Sample ID: CA-DU-1A

Matrix: Solid Percent Dry: 99.2% Results expressed on a dry weight basis

Matrix: Solid Perd	ent Dry: 99.	2% Resul	its expr	essed on	a dry v	veight ba	asis.			
Sampled: 4/5/23 8:10	F	Reporting		Instr Dil'n		Prep		Anal	ysis	
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
diethyl phthalate	< 0.50	0.50	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
4-chlorophenyl phenyl ether	< 0.50	0.50	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
4-nitroaniline	< 0.50	0.50	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
4,6-dinitro-2-methylphenol	< 2.0M	2.0	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
azobenzene	< 0.20	0.20	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
N-nitrosodiphenylamine	< 0.20	0.20	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
4-bromophenyl phenyl ether	< 0.20	0.20	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
hexachlorobenzene	< 0.20	0.20	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
pentachlorophenol	< 1.00	1.00	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
phenanthrene	1.2D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
anthracene	0.34D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
carbazole	< 0.20	0.20	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
di-n-butylphthalate	< 0.50	0.50	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
fluoranthene	1.9D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
benzidine	< 3.0M	3.0	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
pyrene	2.4D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
butyl benzyl phthalate	< 0.50	0.50	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
benzo(a)anthracene	1.1D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
chrysene	1.2D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
3,3'-dichlorobenzidine	< 3.0	3.0	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
bis(2-ethylhexyl)phthalate	0.69	0.50	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
di-n-octyl phthalate	0.53	0.50	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
benzo(b)fluoranthene	0.81D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
benzo(k)fluoranthene	0.85D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
benzo(a)pyrene	1.1D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
indeno(1,2,3-cd)pyrene	0.68D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
dibenzo(a,h)anthracene	0.25D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
benzo(g,h,i)perylene	0.92D	0.050	ug/g	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
Surrogate Recovery		Limits								
2-fluorophenol SUR	62	21-100	%	1		4/12/23		4/18/23	6:12	SW3546/8270E
phenol-D5 SUR	70	10-102	%	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
2,4,6-tribromophenol SUR	65	10-123	%	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E
nitrobenzene-D5 SUR	62	35-114	%	1		4/12/23		4/18/23	6:12	SW3546/8270E
2-fluorobiphenyl SUR	71	43-116	%	1		4/12/23		4/18/23	6:12	SW3546/8270E
p-terphenyl-D14 SUR	98	33-141	%	1	CL	4/12/23	16154	4/18/23	6:12	SW3546/8270E

- Lab qualifiers are NOT validation qualifiers
- Should be reviewed by a third-party chemist (i.e., not the lab)



D = The RPD for the sample duplicate was outside the acceptance range.

M = The percent recovery in the matrix spike was outside acceptance criteria.

Basic QC

- Blanks
- Matrix Spike/Matrix
 Spike Duplicate
 (MS/MSD)
- Lab Control
 Sample/Lab Control
 Sample Duplicate
 (LCS/LCSD)
- Lab duplicates
- Non-conformance callouts

Method	QC ID	Parameter	Associated Sample	Result	LOQ	LOD	DL	Units	Added	%R	Limits	RPI	RPD	Limit
E300.0A	BLK2203243	Chloride		0.40 U	0.50	0.40	0.088	mg/L						
E300.0A	LCS2203243	Chloride		9.4	0.50	0.40	0.088	mg/L	10	94	90	110		
E300.0A	LCSD2203243	3 Chloride		9.4	0.50	0.40	0.088	mg/L	10	94	90	110	0	10
E300.0A	MS2203243	Chloride	63149-006	54	0.60	0.48	0.11	mg/L	20	103	90	110		
E300.0A	MS2203243	Chloride	63196-001	440	3.0	2.4	0.53	mg/L	100	96	90	110		
E300.0A	MSD2203243	Chloride	63196-001	480	3.0	2.4	0.53	mg/L	100	127 *	90	110	7	10

Chain of Custody

- Chain of custody
- Lab login form that documents cooler temperature, preservative confirmation, and any sample damage or compromise

Absolute Re	source Associ		Sam	ple Recei	ipt C	Condi	tion		<i>port</i> Job Number:		62816
Samples Receiv	ved from:	□-UPS [D-)	Lab C	ouri	er 70-Client		
	- present & intac								CoC signe		M-Yes □-No
Receipt Temp:	-4-°C	Samples of									hrs ago? V-Yes U-No
Comments:		PFAS-onl	y real	ice?	U-N	10 190-	N/A		Any signs	01 1	reezing?
Preservation				Bottle Size/	Type	& Qu	antity	_		10	Check pH for ALL applicable*
/ Analysis										5	amples and document:
HCl	40mL(G)	250mL(P) 250mL(P)		500mL(P)		1L(G)				+	
HNO ₃ H ₂ SO ₄	125mL(P) 40mL(G)	60mL(P)		500mL(P) 125mL(P)		250mJ	(P)		500mL(P)		
NaOH	125mL(P)	250mL(P)					100				
(NH4)2SO4	60mL(P)	125mL(P)		250mL(P)						+	
ZnAc-NaOH Trizma	125mL(P) 125mL(P)	250mL(P) 250mL (P)						-		-	pH ≤ by analoge VOC, PFAS, TOC,O&G
NH ₄ Ac	125mL(P)	250mL (P)								3	lesidual Cl not present:
NaS-O	40mL(G)	120mL(P)									ABN625Pest608
MeOH	20mL(G)	40mL(G)	1		12		100				lacteria ResCl √by analyst
None (solid)	2oz(G)	4oz(G)	16			Syring					C Dry applicable? (Y) N
None (water)	40ml (G)	60mL(P)		125mL(P)		250mI	(P)		500mL(P)	1	L(G) 1L (P)
Rag	5									+	
Mold	Cassette	Bulk		Plate		Tape L	ift			+	
Ashestos	Cassette Cassette	Bulk Bulk		Wipe		_	-				
Analyses marke VOC & TOC W VOC Solid-McC	ple containers/en ed on COC match Vater-no headspace? OH covers solid, no	bottles received	d? ation C	DK?	X	Х	X		2816-15	, ,	8 bags not AR Contain
	ottles & samples/I		QC:	rec'd, it req'd?			X	Fe	ot ID#:	=	
	provided by AR	45					X	-		_	
Samples within	s communicated i	n writing:	-		X			+		-	
NOs NOso-POA	pH, BOD, Coliform/	E. ove (P/A or MPN), Ento	rococci, Color			X				
	lity, Odor, GrVI, Ferro D on samples mat		Oxygen	Unpres tiza	X		-	Н			
	inicated to analyst				/		Y				
	samples sent to su						X	D	ate Prep'd:		Date sent:
Pesticides EPA							X				
Compliance san	mples have no dis	crepancies/requ	ire no	flags?			X		or must be reject		
Log-in Supervi	sor notified imme	diately of follow	ring ite	ems:			X		iscrepancies, comp		e samples (NHDES, MADEP, Dol
	Inspected an	d Received By:	K	w.			Da		Time: 9/27	23	
Peer Review (
	Project Manager	On Ice, T						nple l	IDs		☐ Analyses in Correctly
☐ Project Na		□ PO# (if p					Mat				-references
	es communicated			nt? Shipping Ch					ime collected		-wastewater methods
☐ Received D			ted ab	ove communic	cated?		Sho ate:	at H	Ts communicate	xl	□ Notes from CoC in LIMS
Notes: (cont	inue on back	Reviewed By: as needed)		N.E.E.			ate: _	/ PD	Initials Da		What was sent? Report / Data / EDD / Invoice
						Uplo	aded aded	/ PD	OF		Report / Data / EDD / Invoid Report / Data / EDD / Invoid
					19 of 1	19				QSD	-04 Rev10 04/06/22 CLD (Page I of

Presumptive Certainty

Massachusetts Contingency Plan (MCP) requires labs to certify on 'Presumptive Certainty' regarding the scientific defensibility, precision and accuracy and reporting of analytical data.

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of- Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES
A res	ponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO

Were results reported for the complete analyte list specified in the selected CAM protocol(s)?

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Were all QC performance standards specified in the CAM protocol(s) achieved?

NO

NO

ND

117

Aroclor 1268

PCBs, Total

		_			-							_	
Parameter	Result	Qualifi	ier Units	RL	MDL	Dilution Factor	Column						
Polychlorinated Biphenyls by GC - V	Vestborough Lab												
Aroclor 1016	ND		ug/kg	98.2		1	Α						
Aroclor 1221	ND		ug/kg	98.2		1	А						
Aroclor 1232	ND		ug/kg	98.2		1	Α						
Aroclor 1242	ND	Pa	rameter	00.2		4	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Aroclor 1248	ND	_						Quamici	Onito	ILE .		Dilution i uctor	Column
Aroclor 1254	ND	Po	olychlorina	ted Bipheny	Is by GC	C - Westborou	gh Lab						
Aroclor 1260	ND									5.000			
Aroclor 1262	ND	Are	oclor 1016				ND		ug/kg	54300		100	Α
Aroclor 1268	ND	Are	oclor 1221				ND		ug/kg	54300		100	Α
PCBs, Total	ND	Are	oclor 1232				ND		ug/kg	54300		100	Α
		Are	oclor 1242				ND		ug/kg	27200		100	Α
Parameter	Result	Qı Arı	oclor 1248				1420000		ug/kg	54300		100	Α
Polychlorinated Biphenyls by GC - W	estborough Lab	Are	oclor 1254				1480000		ug/kg	54300		100	В
Aroclor 1016	ND	Are	oclor 1260				ND	$\overline{}$	ug/kg	54300		100	Α
Aroclor 1221	ND	Are	oclor 1262				ND		ug/kg	54300		100	Α
Aroclor 1232	ND	Are	oclor 1268				ND	1	ug/kg	27200		100	Α
Aroclor 1242	ND	PC	Bs, Total				2900000	1	ug/kg	27200		100	В
Aroclor 1248	ND		, rotal				2000000	•	ug/kg	21200		100	
Aroclor 1254	117		ug/kg	97.6	-	1	В						
Aroclor 1260	ND		ug/kg	97.6		1	Α						
Aroclor 1262	ND		ug/kg	97.6		1	Α						A

1

1

Α

В

97.6

97.6

All other pages are non-detect/U results, but one page looks like this....

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	ıh Lab					
Methylene chloride	ND		ug/l	2.0	_	1
1,1-Dichloroethane	ND		ug/l	1.0	-	1
Chloroform	ND		ug/l	1.0	-	1
Carbon tetrachloride	ND		ug/l	1.0	-	1
1,2-Dichloropropane	ND	—	ug/l	1.0	-	1
Dibromochloromethane	ND		ug/l	1.0	-	1
1,1,2-Trichloroethane	ND		ug/l	1.0	-	1
Tetrachloroethene	160		ug/l	1.0	-	1
Chlorobenzene	ND		ug/l	1.0	-	1
Trichlorofluoromethane	ND		ug/l	2.0	-	1
1,2-Dichloroethane	2.2		ug/l	1.0	-	1
1,1,1-Trichloroethane	ND		ug/l	1.0	-	1
Bromodichloromethane	ND		ug/l	1.0	-	1
trans-1,3-Dichloropropene	ND		ug/l	0.40	-	1
cis-1,3-Dichloropropene	ND		ug/l	0.40	-	1
1,3-Dichloropropene, Total	ND		ug/l	0.40	-	1
1,1-Dichloropropene	ND		ug/l	2.0	-	1
Bromoform	ND		ug/l	2.0	-	1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	-	1
Benzene	ND		ug/l	0.50	-	1
Toluene	ND		ug/l	1.0	-	1
Ethylbenzene	ND		ug/l	1.0	-	1
Chloromethane	ND		ug/l	2.0	-	1
Bromomethane	ND		ua/l	2.0	-	1
Vinyl chloride	1.3		ug/l	1.0	-	1
Chloroethane	ND		ug/l	2.0	-	1
1,1-Dichloroethene	ND		ug/l	1.0	-	1
1,1-Dichloroethene trans-1.2-Dichloroethene	ND ND		ug/l ug/l	1.0	-	1

You will see PAHs everywhere, but these concentrations are different....

Sample#: 39861-012 Sample ID: CA-SS-19

Matrix: Solid	Percent Dry: 88	3% Result	s expre
Sampled: 4/14/17 12:3 Parameter	5 Result	Reporting Limit	Units
diethyl phthalate	< 2.8	2.8	ua/a
4-chlorophenyl phenyl ether	< 2.8	2.8	ug/g
4-nitroaniline	< 2.8	2.8	ug/g
4,6-dinitro-2-methylphenol	< 11	11	ug/g
azobenzene	< 1.1	1.1	ug/g
N-nitrosodiphenylamine	< 1.1	1.1	ug/g
4-bromophenyl phenyl ether	< 1.1	1.1	ug/g
hexachlorobenzene	< 1.1	1.1	ug/g
pentachlorophenol	< 5.5	5.5	ug/g
phenanthrene	2.5	0.28	ug/g
anthracene	0.93	0.28	ug/g
carbazole	< 1.1	1.1	ug/g
di-n-butylphthalate	< 2.8	2.8	ug/g
fluoranthene	17	0.28	ug/g
benzidine	< 17	17	ug/g
pyrene	20	0.28	ug/g
butyl benzyl phthalate	< 2.8	2.8	ug/g
benzo(a)anthracene	8.8	0.28	ug/g
chrysene	7.9	0.28	ug/g
3,3'-dichlorobenzidine	< 17	17	ug/g
bis(2-ethylhexyl)phthalate	< 2.8	2.8	ug/g
di-n-octyl phthalate	< 2.8	2.8	ug/g
benzo(b)fluoranthene	11	0.28	ug/g
benzo(k)fluoranthene	6.8	0.28	ug/g
benzo(a)pyrene	11	0.28	ug/g
indeno(1,2,3-cd)pyrene	4.2	0.28	ug/g
dibenzo(a,h)anthracene	1.8	0.28	ug/g
benzo(g,h,i)perylene	4.0	0.28	ug/g

Sample#: 39861-011 Sample ID: CA-SS-DUP

Matrix: Solid Percent Dry: 81.3% Resul

Sampled: 4/14/17 0:00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Reporting
Parameter	Result	Limit
diethyl phthalate	< 0.58	0.58
4-chlorophenyl phenyl ether	< 0.58	0.58
4-nitroaniline	< 0.58	0.58
4,6-dinitro-2-methylphenol	< 2.3	2.3
azobenzene	< 0.23	
N-nitrosodiphenylamine	< 0.23	0.23
4-bromophenyl phenyl ether	< 0.23	0.23
hexachlorobenzene	< 0.23	
pentachlorophenol	< 1.2	1.2
phenanthrene	0.41	0.058
anthracene	0.084	0.058
carbazole	< 0.23	0.23
di-n-butylphthalate	< 0.58	0.58
fluoranthene	0.66	0.058
benzidine	< 3.5	3.5
pyrene	0.64	0.058
butyl benzyl phthalate	< 0.58	0.58
benzo(a)anthracene	0.38	0.058
chrysene	0.34	0.058
3,3'-dichlorobenzidine	< 3.5	3.5
bis(2-ethylhexyl)phthalate	< 0.58	0.58
di-n-octyl phthalate	< 0.58	0.58
benzo(b)fluoranthene	0.43	0.058
benzo(k)fluoranthene	0.20	0.058
benzo(a)pyrene	0.31	0.058
indeno(1,2,3-cd)pyrene	0.15	0.058
dibenzo(a,h)anthracene	0.061	0.058
benzo(g,h,i)perylene	0.17	0.058

Sample#: 39861-010 Sample ID: CA-SS-21

Matrix: Solid Percent Dry: 43.5% Resul

	,	
Sampled: 4/14/17 11:35		Reporting
Parameter	Result	Limit
diethyl phthalate	< 22	22
4-chlorophenyl phenyl ether	< 22	22
4-nitroaniline	< 22	22
4,6-dinitro-2-methylphenol	< 89	89
azobenzene	< 8.9	8.9
N-nitrosodiphenylamine	< 8.9	8.9
4-bromophenyl phenyl ether	< 8.9	8.9
hexachlorobenzene	< 8.9	8.9
pentachlorophenol	< 44	44
phenanthrene	110	2.2
anthracene	35	2.2
carbazole	< 8.9	8.9
di-n-butylphthalate	< 22	22
fluoranthene	440	5.6
benzidine	< 130	130
pyrene	460	5.6
butyl benzyl phthalate	< 22	22
benzo(a)anthracene	270	2.2
chrysene	250	2.2
3,3'-dichlorobenzidine	< 130	130
bis(2-ethylhexyl)phthalate	< 22	22
di-n-octyl phthalate	< 22	22
benzo(b)fluoranthene	320	2.2
benzo(k)fluoranthene	280	2.2
benzo(a)pyrene	260	2.2
indeno(1,2,3-cd)pyrene	70	2.2
dibenzo(a,h)anthracene	24	2.2
benzo(g,h,i)perylene	62	2.2

Uncommon notes from the lab like this....

Sample#: 39365-009 **Sample ID**: CA-SS-1

Matrix: Solid Percent Dry: 57.1% Results expressed on a dry weight basis.

Sampled: 2/22/17 12:55		Reporting		Instr Dil'n	F	rep	Anal	lysis	
Parameter	Result	Limit	Units	Factor	Analyst D	ate Batch	Date	Time	Reference
TPH C10-C36	150000	1700	ug/g	10	JZL 2/24	1/17 9437	2/28/17	4:35	SW3550C8100m
Surrogate Recovery		Limits							
2-fluorobiphenyl SUR	DOR	40-140	%	10	JZL 2/24	1/17 9437	2/28/17	4:35	SW3550C8100m
o-terphenyl SUR	DOR	40-140	%	10	JZL 2/24	1/17 9437	2/28/17	4:35	SW3550C8100m

DOR = Diluted out of range.

Note: The reported concentration does not resemble a petroleum product.

...don't be afraid to give the lab a call.

Thank You

Allison Drouin, PG, LG

Senior Project Manager

adrouin@crederellc.com

207-828-1272 x15

Rick Vandenberg, PG, LG

Senior Project Manager

rick@crederellc.com

207-828-1272 x30

