

April 6

Understanding Distribution of & Changes to PFAS in a Riverine System: A Case Study

PRESENTED BY

Lisa McIntosh, DABT Senior Technical Manager

The Science of PFAS: Public Health & the Environment

How does PFAS move in a river after a release?

- →How do concentrations change over time?
- →How do PFAS compartmentalize into various media?

June 2019 Release

→ Malfunction of fire suppression system in hangar at Bradley International Airport

- 40,000 gallons AFFF/water released
- Discharged to Farmington River via wastewater treatment plant

AFFF was primarily a legacy (PFOS-based) product

AFFF transported through sewer to POTW and discharged to river

October 2019 World War II B-17 Crash

- →Up to 25,000 gal. of AFFF/water mixture
- → Portion entered Rainbow Brook, drains to Farmington River

River PFAS Assessment

Objectives

- Determine PFAS concentrations in surface water, fish tissue, and sediment
- Delineate linear extent
- Evaluate impact change with time
- Use data to inform recreational restrictions

Challenge

• How do we tease out impacts from other sources?

Overview of Source Areas and Sampling Zones

Sample Collection

Medium	# Rounds	# Samples	Notes	
AFFF Product	1	2	✓ From drum and holding tank;✓ June 2019	
Wastewater and Biosolids	1	8/3	✓ From various stages of treatment;✓ July 2019	
Surface Water	6	25	 ✓ From upper 1' of water column; ✓ June, July, Sept., Oct., Nov. 2019, July 2020 	
Fish Fillet	3	40	 ✓ Yellow Perch (<i>Perca flavescens</i>) ✓ White Sucker (<i>Catostomus commersonii</i>) ✓ Composites of 5 fish; descaled, filets, skin ✓ July, September 2019; July 2020 	
Sediment	1	13	✓ From 0-2" depth;✓ November 2019	

PFAS Analysis

→lsotope dilution

→SPE LC-MS/MS

	33 Target Analytes	
PFBA	PFBS	4:2 FTS
PFPeA	PFPeS	6:2 FTS
PFHxA	PFHxS	8:2 FTS
PFHpA	PFHpS	PFOSA (or FOSA)
PFOA	PFOS	N-MeFOSA
PFNA	PFNS	N-EtFOSA
PFDA	PFDS	N-MeFOSE
PFUnA	PFDoS	N-EtFOSE
PFDoA	N-MeFOSAA	HFPO-DA
PFTrDA	N-EtFOSAA	ADONA
PFTeDA	9CI-PF3ONS	11CI-PF3OUdS

Surface Water Sampling Results

Sample Date

ΣCT5 PFAS Concentrations Downstream of MDC Outfall

 \sum PFAS5 = sum of PFOA, PFOS, PFNA, PFHpA, and PFHxS

Radar plots assist visualization of PFAS signatures

AFFF and background surface water have very different PFAS signatures

Surface water collected the day after the discharge has PFAS distribution similar to AFFF

Surface water PFAS signature approaching background signature by June 21 (13 days)

Surface water PFAS signature returned to reference signature within three months

Fish Tissue Sampling Results

- Filletskin on
- descaled

Perca flavescens Yellow Perch Predator

Catostomus commersonii White Sucker Bottom Dweller

Average Fish PFOS Concentrations declined with time

Average PFOS Concentrations in Yellow Perch and White Sucker in Lower and Upper Farmington River

- → Similar pattern observed for sucker
 - Lower concentrations

Fish Tissue PFAS Characterization

Fish Tissue PFAS Characterization

Woodard & Curran

Fish Tissue PFAS Characterization

Summary

- → Pulsed release of AFFF shows immediate impacts
- → Rapid decrease in [PFAS] for surface water within months
- → [PFOS] decreased in fish muscle to baseline within one year

Implications

- → Rapid response critical
- → Clear pattern of PFAS impacts from other sources
- → Importance of establishing baseline

→ Value of conducting multimedia study, expanded analyte list

Lisa McIntosh, MS, DABT

Sr. Technical Manager

Providence, RI

Imcintosh@woodardcurran.com

Thank you!!