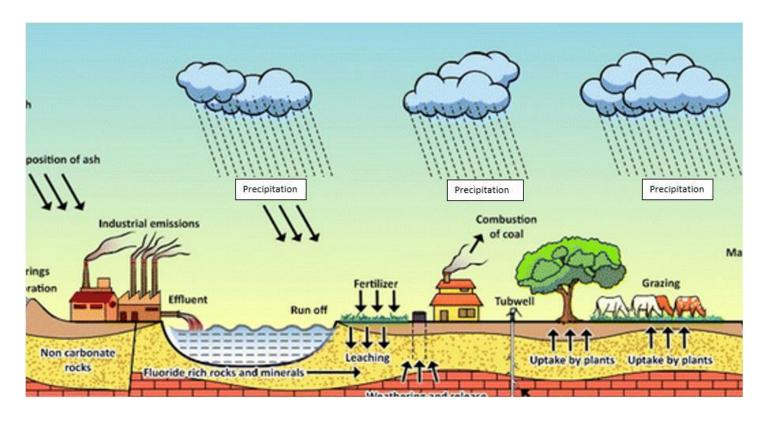


TRUST - PERFORMANCE - PEOPLE

Environmental and Infrastructure Solutions

Progress in Development of Stack Sampling Methods to Measure PFAS in Air Emissions from Stationary Sources



PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

PFAS in Air Source Emissions

- Focus on PFAS has been in Drinking Water, Groundwater, Soil
- Very little focus on Air to date, But that's changing
- Few regulatory standards for PFAS in Air; Permits with DRE or informational testing
- No EPA validated ambient air monitoring methods for PFAS
 - Deposition Sampling
 - Ambient Air Monitoring TO-13A
- EPA Draft Other Test Method 045 (OTM-45) stack testing method for PFAS released in January 2021

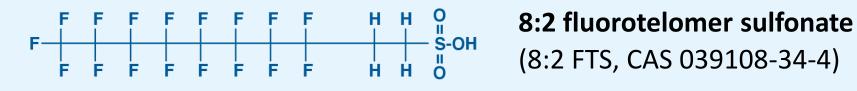
Why Air?

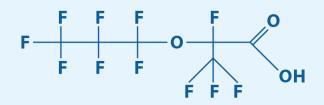
https://www.picswe.com/

What PFAS Are We Looking For?

Over 6000+ PFAS Compounds

- EPA Method 537.1 (18 PFAS compounds)
 - Determination of PFAS in drinking water by solid phase extraction (SPE), liquid chromatography/tandem mass spectrometry (LC/MS/MS),
- EPA Method 533 (25 PFAS compounds)
 - Determination of PFAS in drinking water by Isotope dilution anion exchange, SPE, and LC/MS/MS,
- EPA Method 8327 (24 PFAS Compounds)
 - Analysis of surface water, groundwater, and wastewater matrices, LC/MS/MS
- EPA Draft Method 1633 (40 PFAS compounds)
 - Analysis PFAS in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS
- EPA Draft Method OTM-45 (~50 PFAS compounds)
 - Measurement of Selected PFAS from Stationary Sources (Stack Testing)


Per vs Poly PFAS



perfluorooctane sulfonic acid (PFOS, CAS 1763-23-1)

perfluorooctanoic acid (PFOA, CAS 335-67-1)

Hexafluoropropylene oxide-dimer acid (HFPO-DA, CAS 13252-13-6)

Draft EPA Method OTM-45

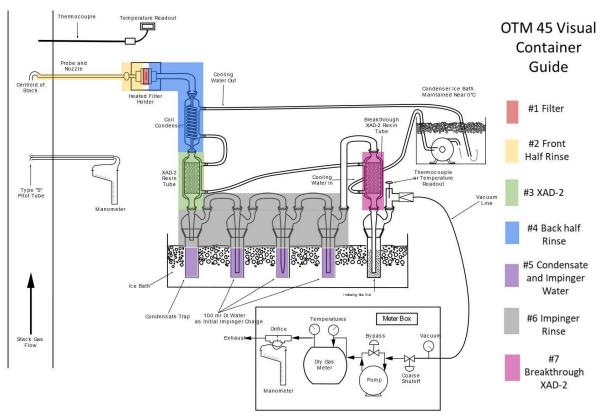
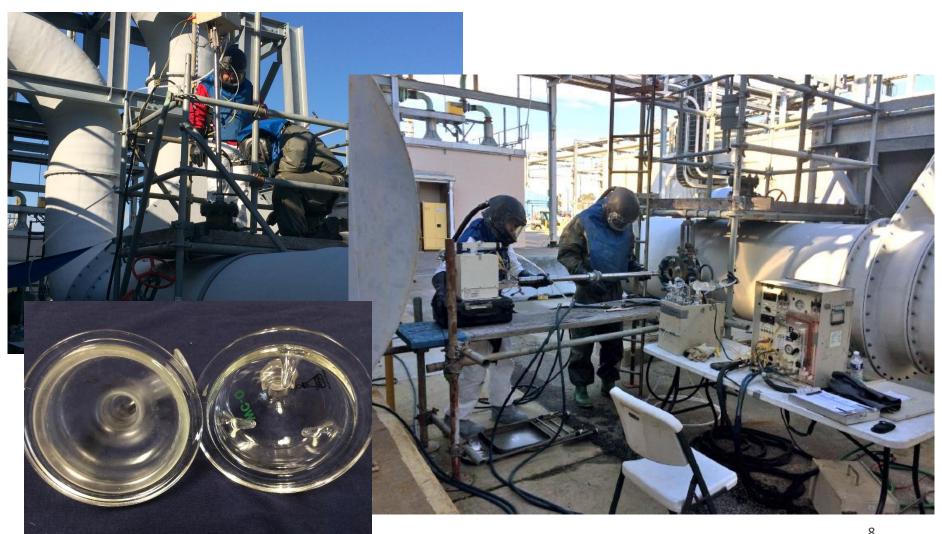
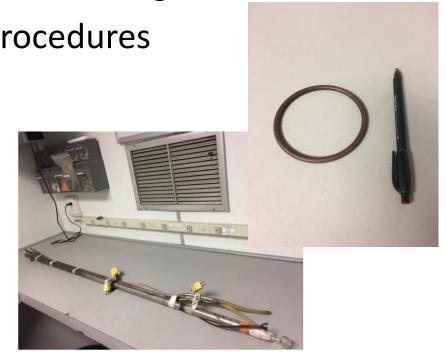


Figure OTM-45-1. Sampling Train


- Isokinetic Sampling Method
- Four Sample Fractions
- Blank train Proof Blank

- LC/MS/MS Analysis
- Semi-volatile, Polar PFAS
- Isotope Dilution Isotopically Labeled Standards

Draft EPA Method OTM-45 Isokinetic Train



Draft EPA Method OTM-45 Isokinetic Train

Blank Contamination

- OTM-45 Glassware Cleaning procedure
- Laboratory Prep of XAD Resin
- Clean and Prep Mobile lab
- Revised Sampling Equipment Handling Procedures
- Revised Sample Recovery Procedures
- Limit Access to Mobile Lab
- To PTFE or not to PTFE

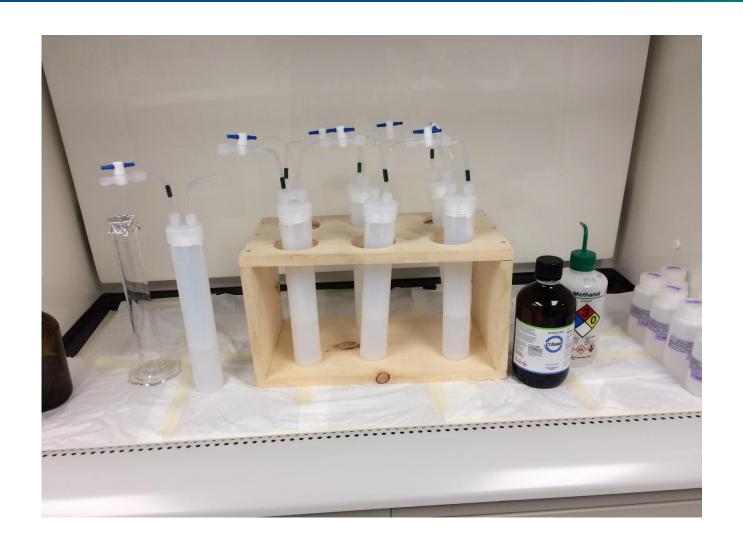
Breakthrough

ANALYTICAL FRACTION WORKSHEET																		
		FH	Q		BHS/ XAD1	Q		BH Condensate	Q		XAD2	Q		Subtotal Fractions	XAD2 Breakthrough		Total Catch	Total Catch (ug)
														1,2,3	Percentage		(ng)	
LABORATORY REPORT DATA, ng.																		
Perfluorobutanoic acid (PFBA)		0.498			15.0			9.23			3.29			24.728	13.3%		28.018	0.0280
N-ethylperfluorooctanesulfonamidoacetic acid (NEtFOSAA)	<	0.140		<	0.190		<	0.0960		<	0.190		<	0.426	0.0%	<	0.426	0.0004
2-(N-ethylperfluoro-1-octanesulfonamido) ethanol (N-EtFOSE)		5.130		<	1.00		<	0.237		<	1.00		≤	5.130	0.0%	≤	5.130	0.0051
Perfluorohexanoic acid (PFHxA)	<	0.210			9.10	B,FB		2.39			0.75	В	≤	11.490	6.5%	≤	11.490	0.0115
Perfluoroheptanoic acid (PFHpA)	<	0.110			9.07	B,FB		0.751			2.99	В	≤	9.821	30.4%	≤	12.811	0.0128
N-methylperfluorooctanesulfonamidoaetic acid (NMeFOSAA)	<	0.119			0.142	J	<	0.146			0.194	J	≤	0.142	136.5%	≤	0.336	0.0003
2-(N-methylperfluoro-1-octanesulfonamido) ethanol (N-MeFOSE)	<	0.280		<	1.00	*-,*1	<	0.131			1.52	CI,B,*+,*1	<	1.411	107.7%	<	2.931	0.0029

Notes:

Subtotal of Fractions 1, 2, 3 does not include non-detect values. If all three fractions are non-detects then the subtotal shown is the sum of all three non-detect values.

The Fraction 4 (breakthrough XAD) value is only included in the Total Catch for each fraction if the breakthrough percentage for that fraction is greater than 10%.


- Q = Data Qualifier
- J = Result is less than the reporting limit but greater than or equal to the method detection limit. The concentration is an approximate value.
- B = Compound was found in a lab blank sample
- FB = Compound was found in a field blank sample at a level above the reporting limit. Field blanks with "J" values are not flagged here but are shown in the analytical report.
- I = The value is an estimated maximum posssible concentration
- CI = The peak exhibited chromatographic interference that could not be resolved. The value may be biased high.
- *- = LCS or LCSD are outside the acceptance limits, biased low.
- *+ = LCS or LCSD are outside the acceptance limits, biased low.
- *1=LCS/LCSD RPD exceeds control limits.
- < = Not detected in Fractions 1,2,and 3 at the Method Detection Limit. MDL values are reported.
- ≤ = Subtotal of Fractions 1,2, and 3 is a summation of only the detected values.

Modified EPA Method 18 Cryogenic Train

- Non-Isokinetic Sampling Method
- Methanol in Impingers Separate Sample Fractions
- GC/MS Analysis
- Methanol Bath Chilled to -100 °F

Modified EPA Method 18 Cryogenic Train

Modified EPA Method 18 Cryogenic Train

Detection Levels

- OTM-45 detection limits
 - 0.05ng to 2.8ng/sample
 - Varies per fraction, per compound, per lab
 - equal to ppq in-stack PFAS concentrations (Table 45-11)
- Modified Method 18 detection limits
 - 2.5ng to 50ng/sample
 - equal to ppt in-stack PFAS concentrations

Processes Tested by Weston

- Chemical Manufacturing
- Coating Operations
- Sewage Sludge Incinerator
- Carbon Regeneration

Potential Sources of PFAS Air Emissions

- Chemical Manufacturing
- Coating Operations
- Sewage Sludge Incineration
- AFFF (DOD)
- Refineries
- Pulp and Paper
- Waste Incineration
- Carbon Regeneration
- Landfills
- Others......

PFAS Air Pollution Control Systems

- Thermal Oxidation
- Scrubbers
- Carbon Beds
- Air Stripper
- Incineration
- Others??

Other PFAS Sampling/Analytical Methods

- EPA Canister Sampling Method
 - Measure Highly volatile PFAS, non-polar
- Total Organofluorine (TOF) Analysis Combustion IC
 - Measure Total Fluorine separate HF
 - Subtract HF measured by EPA Method 26 or other methods
- Total Oxidizable Precursors (TOP) Analysis
 - Converts polyfluorinated precursor PFAS compounds to measurable forms of PFAS
- Time-of-Flight Non-target Analysis
 - Liquid Chromatography Quadrupole Time-of-Flight Spectrometry
 - Not Quantitative Determines chemical structure to identify compounds
- OTM-45 Sequential Extractions
 - MeOH and separate MeCl extractions for fluorotelomers

Future

- EPA 2019 PFAS Action Plan
 - EPA Administrator Michael Regan is from NC
 - April 27, 2021 EPA Council on PFAS
- EPA Validation and Promulgation of Stack Testing Methods
- Legal action by state regulatory agencies
- Regulatory agencies will determine industries and processes to be regulated, which PFAS compounds to be measured, and will establish air emission limits
- Lawyers, Engineers, Chemists, and..... Stack Testers

Acknowledgements and Contacts

Wesley Fritz, Weston Solutions, Inc.

Wes.Fritz@westonsolutions.com

(610) 721-6419

William Anderson, PhD. Eurofins/TestAmerica Inc.

William.Anderson@eurofinset.com

(865) 291-3080

Questions?

