PFAS Treatment with Single-use Ion Exchange Resin

Case Histories and Cost vs GAC

Presented by: Francis Boodoo Co-authors: Cathy Swanson, Ted Begg, Joe Klimek, Jord Yniguez NEWMOA PFAS Science Conference, Marlborough, MA 5 – 6 April 2022

Francis Boodoo

Cathy Swanson

Ted Begg

Authors

Authors

Joe Klimek

Jord Yniguez

Topics

- Case Histories Resin vs GAC
- O&M Cost Estimates
- Modeling vs Accelerated Pilots vs Full Pilots
- Buffered resin

Simple & Easy to Operate Lead-Lag Vessels

- Reduces PFAS to ND
- 1.5 to 3 minutes EBCT
- 20 to 40 BV/h 3 to 4 gpm/ft3 resin
- 36 inches bed depth
- 6 to 12 gpm/ft2 (15 to 30 m/h)
- 8-ft diameter for 500 gpm flowrate
- Minimal operator attention

Compact Vessels – minimum footprint and overhead space

Courtesy Onion Equipment

- Long resin life ~ 2 to 3 years
- No Backwash Tank or backwashing
- No liquid waste to drain
- No chemicals or regeneration
- Minimal operator attention

PFAS-selective resin: Dual removal mechanism

Order of PFAS Breakthrough

PFBA < PFPeA < PFHxA < PFHpA < PFOA < PFNA < PFBS < PFHxS < PFOS

PFBA at inlet of 42 ppt is not shown but will break before all other PFAS

How Selective is Resin?

https://www.aliexpress.com/item/32698329541.html

< 1% of sites are occupied by PFAS > 99% of sites occupied by all other anions e.g.SO4, NO3, Cl

Concentrations of major anions are ~ 1 million times higher than PFAS

Case History: Horsham Well 10

140 ppt Total PFAS PFAS Reduced to Non-Detect using GAC and PFAS-Selective Resin

Photo courtesy Altair Equipment

Well 10 - Initial Treatment: GAC > GAC > Single-use Resin

Total PFAS 140 ppt

No regeneration or other chemicals are used.

Resin is disposed of after a single use

PFOS + PFOA Removal – Bituminous GAC 1 + 2

B-GAC at 17,000 BV to reach MRL of 2.5 ppt at 5.6 mins EBCT

PFOS + PFOA Removal – In service for 570 days

1 liter resin treats > 456,000 liters of water to ND

PFBS – Short Chain Sulfonic Type PFAS

EBCT -	mins.
GAC #1 + 2	5.6
PFA694E 2/3 bed	1.8

PFBS – Perfluorobutanesulfonate, C_4F_9 .SO₃H; Mol.Wt. 300

Update on Horsham Well 10

- Permanent System handles 100 gpm flow
- GAC is no longer used
- Single-use PFA694E installed in Lead-Lag Vessels
- Now targeting short-chain PFAS removal

Case History: Warminster Well 26

2000 ppt Total PFAS

Compared: Bituminous GAC Coconut Shell GAC Single-Use PFAS-Selective Resin

Warminster Well 26 - Medium PFAS Levels

	Min.	Avg.	Max.	Eurofins Lab [#]
	ppt	ppt	ppt	Det. Level ppt
PFBA *	55	55	55	1.8 - 2
PFBS	27	34	45	0.3 - 4
PFPeA *	138	138	138	1.8 - 1
PFHxA	105	141	177	0.4 -2
PFHxS	275	316	429	0.4 -4
PFHpA	39	52	61	0.3 -1
PFOA	186	236	290	0.3 - 1
PFNA	7	10	14	0.4 - 1
PFOS	504	650	910	0.3 - 4
Sum	1336	1632	2119	

- Limited analyses
- # for 2018 to 2016

 TOC
 730,000 ppt

 VOCs (TCE, PCE, CCl4)
 230,000 ppt

Expect < 500 ppt VOC in stripper effluent

Coconut Shell GAC Full Scale (2016) Bituminous F400 GAC Pilot (2017)

Total 13.6 min

EBCT

150 gpm Well

PFA694E Resin: PFOS Removal 967 days (single vessel 2 to 3 mins. EBCT)

With Lead-Lag Design: ~750,000 BV thru Lead before leakage ex Lag reaches 2 ppt

PFA694E Resin: PFOA Removal 967 days (single vessel 2 to 3 mins. EBCT)

Liters of water treated by 1liter of PFA694E resin

With Lead-Lag Design: ~300,000 BV thru Lead before leakage ex Lag reaches 7 ppt

PFA694E Resin: PFBS Removal 967 days (single vessel 2 to 3 mins. EBCT)

With Lead-Lag Design: ~750,000 BV thru Lead before leakage ex Lag reaches 2 ppt

Update on Warminster Well 26

- GAC no longer being used due to higher OPEX
- 500 gpm system uses PFA694E resin in Lead-Lag vessels
- PFA694E resin system continues to meet expectations

Comparing Resin & GAC Designs for Potable Water

Design Comparison	Resin	GAC	
Total System flow - gpm	2000	2000	
Vessel Diameter - feet	12	12	
Number of trains	1	4	4 times more equipment
Flow per train - gpm	2000	500	
Total number of vessels for all trains (lead + lag)	2	8	
Pounds of GAC		20,000	33.6 lb/cu ft density
Media volume per vessel - ft ³	504	595	
EBCT Contact time per vessel - minutes	2	9	> 4 times more EBCT
Estimated BV for lead vessel change out trigger	280,000	35,000	
Total Water Treated per Year - MMgals/year	1,051	1,051	
Days Between Lead Vessel Change-outs	367	216	
Volume of Media Consumed per Year – ft ³	502	4015	8 X more media consumed

Comparing Resin & GAC Designs for Potable Water

	IX	GAC
Media consumed per year – Cubic Feet	502	4015
Media Cost per pound		\$ 2.00
Media Cost per cubic foot	\$ 300.00	\$ 67.20
Media Cost per year	\$ 150,552	\$ 269,790
Operating Cost - \$/1000 gallons	\$ 0.14	\$ 0.26

Resin is ~ half the OPEX for GAC

Piloting for 2+ years is just too long:

Consider Better / Faster Options:

(1) Predictive Modeling & (2) Accelerated Piloting

20-year history of successful modeling

of contaminant removal with Ion Exchange

- Perchlorate
- Arsenic
- Chromate
- Uranium
- Nitrate
- Bromide
- Routine thruput guarantees given

Everything starts with the water

Provide this:

- Critical items shown in blue
- If not provided, assumed ND in green
- Endpoint target

 this is key

Parameter	Units	Pa
Operational Flow Rate	gpm	Su
Operational Schedule	hour/day	Oi
Daily Volume (average)	Gallons	Тс
Sulfate	mg/L	Pe
Nitrate	mg/L	Pe
Alkalinity (as CaCO ₃)	mg/L	Pe
Chloride	mg/L	Pe
Fluoride	mg/L	Pe
Perchlorate	ppb	Pe
Arsenic	ppb	Pe
Hexavalent chromium	ppb	Pe
Uranium	ppb	Pe
Calcium	mg/L	Pe
Magnesium	mg/L	Pe
Sodium	mg/L	Pe
Potassium	mg/L	4:
Iron	ug/L	6:
Manganese	ug/L	8:
рН		Ge
TDS	mg/L	

Parameter	Abrv.	Units
Suspended Solids		mg/L
Dil & Grease		mg/L
Total Organic Carbon		mg/L
Perfluorobutanoic acid	PFBA	ppt
Perfluoropentanoic acid	PFPeA	ppt
Perfluorohexanoic acid	PFHxA	ppt
Perfluoroheptanoic acid	PFHpA	ppt
Perfluorooctanoic acid	PFOA	ppt
Perfluorononanoic acid	PFNA	ppt
Perfluorododecanoic acid	PFDoDA	ppt
Perfluorotetradecanoic acid	PFTeA	ppt
Perfluorobutanesulfonic acid	PFBS	ppt
Perfluorohexanesulfonic acid	PFHxS	ppt
Perfluoroheptanesulfonic acid	PFHpS	ppt
Perfluorooctanesulfonic acid	PFOS	ppt
4:2 FTS (fluorotelomer sulfonate)	4:2 FTS	ppt
5:2 FTS (fluorotelomer sulfonate)	6:2 FTS	ppt
3:2 FTS (fluorotelomer sulfonate)	8:2 FTS	ppt
GenX	GenX	ppt
VOC	VOC	ppb

Simulating breakthru can save valuable time

Example Modeling: Warminster Well 26 Pilot Predicted vs Actual Modeling – Strong Correlation

Example Modeling – Warminster Well 26: Full Scale 2 mins. EBCT

Predicted vs Actual – Very Strong Correlations

Inlet: 141 ppt PFHxA, 234 ppt PFOA

ppt PFAS

Bed Volumes Treated

Example Modeling – Horsham Well10: Full Scale 2 mins. EBCT Predicted vs Actual - Conservative

PFOA with PFA694E resin

Example Modeling - Colorado Pilot Predicted vs Actual – Strong Correlation

Accelerated Piloting – 4 times faster

- Validates predictive modeling
- Faster decisions
- Quick pilot for uncommon PFAS
- Segmented Columns & sampling

ports at 25%, 50%, 75% and 100% points

- Get results 4 times faster from 25% port
- EBCT (minutes): 0.5, 1, 1.5 and 2

Shorter Bed Depths – Faster Results

Time to breakthrough is not linear to the bed volumes!

Modeling 1 minute vs 2 minutes EBCT Predicted vs Actual – Strong Correlation

Modeling can account for shorter bed depths

Brown & Caldwell Pilot in Colorado - Published Results

Used a short resin bed equal to 20 seconds EBCT

Source: 0-60 in the PFAS Lane – A Colorado Case Study

Jeff Jackson, Erin Mackey, Brown and Caldwell Presented at the CA NV Section AWWA Conference San Diego, California, October 22, 2019

Brown & Caldwell Colorado Pilot – Post modeling Predicted vs Actual

Strong correlation even with a short 12" bed depth

Used 12-inch bed depth equivalent to ~20 seconds EBCT

Example Modeling - California Pilot #1 Predicted vs Actual – 1min EBCT

Example Modeling - California Pilot #2 Predicted vs Actual - 95% Correlation

Generating a Prediction Envelope: For Min., Max., Avg.

for variable influent water quality is a major benefit for OPEX planning.

Actual Pilot and Predicted Average were very close!

PFA694EBF Buffered Resin

Bed Volumes of Water Treated

Buffered PFAS Resin No CSMR issues

- Unbuffered resin starts-up with
 - High Chloride,
 - Low sulfate, pH and alkalinity
 - High CSMR & low pH can cause corrosion
- PFA69EBF buffered resin starts with buffered levels of Cl, SO4 HCO3 & pH
- Better corrosion control at start-up

Conclusions

- **PFAS-selective resin is cost-effective** for **PFAS**
- Modeling is accurate & conservative allowing reliable O&M cost estimates
- Modeling excels for widely-changing water chemistries
- Accelerated Piloting provides results 4 times faster & is also conservative
- **Buffered** resin can help with CSMR issues

