

Sources, Transport, Exposure & Effects of PFASs UNIVERSITY OF RHODE ISLAND SUPERFUND RESEARCH PROGRAM

PFAS Mixtures & Liver Adverse Outcomes: Finding PFAS Bad Actors

Angela Slitt, B.S., Ph.D. Professor, College of Pharmacy, URI URI-STEEP Superfund Center

Perfluoroalkyl substances (PFASs) and concerns

- Highly persistent in environment
- Long half-lives, especially for PFOA, PFOS, and PFHxS
- 7000+ PFAS how do we assess safety? Toxicokinetics?
- The <u>mechanisms</u> that dictate tissue distribution, clearance, and half-life are not well understood – even for PFOA and PFOS.
 - Highly absorbed, yet slowly eliminated
 - Cross placental barrier, detectable in breast milk
- Do not occur individually. We are exposed to complex mixtures, which are challenging to recapitulate.

ns	Half-life in Humans	PFAS
	665 hours (3)	PFBS
*	8.5 years (1)	PFHxS
	5.4 years (1)	PFOS
	81 hours (2)	PFBA
	32 days (5)	PFHxA
	1.2 years (4)	PFHpA
	3.8 Years (1)	PFOA
*	4.3 years (4)	PFNA
k	12 years (4)	PFDA
×	12 years (4)	PFUnDA
	Unknown	PFDoDA
	Unknown	PFPrOPrA
SEARCH PROGRAM	UNIVERSITY OF RHODE ISLAND SUPERFUND RESEARCH P	

Emerging PFAS are also detected in pilot whale liver and livers of juvenile marine birds

PFAS Effects and Liver

- Liver is the tissue that often is for distribution and accumulation. Relatively high concentrations, likely due to transporters and high tissue binding.
- Associations with slight elevation in serum liver enzymes (multiple studies human and rodent).
- Rodents demonstrate hepatomegaly (liver enlargement and cancer). This endpoint is widely debated about relevance to humans because of species differences in PPAR-alpha signaling.
- Liver is a depot for <u>multiple</u> PFAS. In humans, ~400 ng/g PFOA and ~600 ng/g PFHpA observed in livers from residents of Catalonia, Spain.
- Little is known about PFAS mixture and adverse liver effects.

Some PFAS Increase Rick Liver Injury and Steatosis

- Non-alcoholic fatty liver disease (NAFLD) is a rising health issue globally. Aside from potential damage to the liver, hepatic steatosis and NAFLD can increase risk for cardiovascular disease.
- Epidemiological data has found positive associations between PFOS and PFOA and biomarkers of liver injury^{1,2,3,4.}
- It is unclear if the liver diseases occur in humans, but associated with elevated markers for liver injury.
- Positive associate of PFAS association with CK18 (marker for NASH).
- Rodent models illustrate increased steatosis with PFOA, PFOS at high doses (> 1mg/kg) and increased liver injury.
- Higher PFAS exposure was associated with more severe disease in children with NAFLD⁸
- Little is known about how maternal exposure can affect liver outcomes, but higher exposure to PFAS during pregnancy has been associated with higher liver enzyme levels in children⁹

- 1. Gallo et al, Environ Health Perspect, 2012, 120(5); 655-661
- 2. Gleason et al.Environ Res 2015; 136, 8–14.
- 3. Lin et al. Am J Gastroenterol. 2010;105(6):1354-1363.
- 4. Darrow et al, Environ Health Perspect. 2016 Aug; 124(8): 1227–1233.

- 5. Butenhoff et al Toxicology. 2012;293, 1–15.
- 6. Botelho et al.Chemosphere 2015;129, 225–231.
- 7. Seacat et al, Toxicol Sci. 2002, 68(1):249-64.
- 8. Jin R et al., *Environ Int.* 2020 Jan;134:105220. doi 10.1016/j.envint.2019.105220.
- 9. Stratakis et al., Hepatology, 2020, 72(5):1758-177 Sources, Transport, Exposure & Effects of PFA

Mechanisms of steatosis

Hypotheses

- ✓ PFAS mixtures will act synergistically to induce steatosis
- ✓ Maternal consumption of a high fat diet in combination with PFAS will induce adverse liver outcomes in pups

Testing PFAS in Human Hepatocytes

Treatment with: 24h DMSO (vehicle), various PFAAs and mixtures of PFAAs at concentrations of $0.25 \,\mu\text{M}$ to $25 \,\mu\text{M}$ with daily media changes of treatments. **Cryostax 5-donor 48h** hepatocytes 72h Gene expression analysis **Stain Nile-red** Sample Target hybridization Signal amplification Detection preparation Luminex® beads Strentavidi Pre-Amplifier vith Capture Probes phycoerythrin (SAPE) (QuantiGene® Plex) **Targeted gene array** Amplifier Read signal using a Luminex Label Probe instrument Incubate bead with sample and SAPE 3 to 80 RNA targets per well Hybridizations and Wash Steps Capture Extenders (CE's) Lyse sample ZZ Label Extenders (LE's) and go Blocking Probes (BP's T Lysate (with target RNAs) (with target RNAs)

from Invitrogen for 35 genes related to lipid and Drug metabolism

> Sources, Transport, Exposure & Effects of PFASs UNIVERSITY OF RHODE ISLAND SUPERFUND RESEARCH PROGRAM

PFASs Induce Lipogenic Gene Expression in Human Hepatocytes

 Shorter chain PFAAs generally had a greater induction than long chain PFAAs at lower concentrations in both sulfonates and carboxylic acids

Marques et al., Toxicol. Appl. Pharmacol., 2022

PFASs are capable of inducing lipid accumulation in human hepatocytes

- ✓ Only short chain PFAAs (except PFDA) induced liver lipid accumulation in our assays.
- Lipid accumulation is limited by glucose content in the media

Marques et al., Toxicol. Appl. Pharmacol., 2022

Testing PFAS mixtures at health advisory levels

- Mix data suggested that the concentrations were too high or perhaps the PFAS negate each other's effects.
- Ultra low (pM) to high concentrations (um)
- Stack the treatments
- Selected PFAS commonly detected in Rhode Island drinking water and Cape Cod private well water.

Slitt and Marques, unpublished

Additive effects are observed at exposure relevant concentrations in Human Hepatocytes

- Cryopreserved human
 hepatocytes. 70 pM-70 μM
- Treated 6 hours after plating (vs. ~16 hours)
- Treated for 48 hrs total
- Gene expression occurred at changes at 70 pM
- Gene expression changes were observed at 70 pM but not at 70 nM or μM.
- Strong activity for PFHxS

Conclusions – In Vitro

PFHxS has the potential to be transcriptionally active in cryopreserved human hepatocytes and at exposure-relevant media concentrations.

There is potential additivity at very low PFAS concentrations (pM)

Human hepatocyte culture conditions seems to be important for detecting PFAS activity.

An in vivo approach to mixtures

Study Design

Marques et al., Toxicology, 2022

Sources, Transport, Exposure & Effects of PFASs UNIVERSITY OF RHODE ISLAND SUPERFUND RESEARCH PROGRAM

PFAS concentrations in Dams

PFHxS > PFOA > PFOS

HFD vs. SD

PFOS 7.32 ug/ml <u>+</u> 0.82 vs. 9.84 ug/ml <u>+</u> 0.61*

PFOA 115.2 ug/ml <u>+</u> 09.23 vs. 139.2 ug/ml <u>+</u> 8.43

PFHxS 212.9 ug/ml <u>+</u> 16.2 vs. 225.6 ug/ml <u>+</u> 25.2

Marques et al., Toxicology, 2022

PFAS concentrations in PND21 Offspring Liver

PFOA > PFHxS > PFOS

<u>PFAS Mix v</u>	<u>ersus PFAS</u>
PFOS	SD

Marques et al., Toxicology, 2022

Dam and Pup Liver Weights

* = p<0.05 versus SD+Veh
= p<0.05 versus HFD+Veh
§ = p<0.05 versus PFOA and PFAS mix within each diet
≠ = p<0.05 versus PFOS and PFAS mix within each diet
†= p<0.05 versus PFHxS and PFAS mix within each diet

Marques et al., Toxicology, 2022

• PFOA and PFAS mix treatments increased liver weights in pups

The PFAS mix increased liver total lipid content and TAGs in pup livers

Liver Triglycerides

- * = p<0.05 versus SD+Veh
- # = p<0.05 versus HFD+Veh
- $\$ = p<0.05 versus PFOA and PFAS mix within each diet
- \neq = p<0.05 versus PFOS and PFAS mix within each diet
- $\ensuremath{\ensuremath{\mathsf{+}}}\xspace$ p<0.05 versus PFHxS and PFAS mix within each diet

- Livers of HFD-PFAS mix offspring had the highest total lipid content
- SD-PFOA, -PFOS, and -PFHxS offspring had higher livers TAGs, which was not observed in the HFD offspring
- HFD-PFAS mix offspring had the highest liver TAGs

Marques et al., Toxicology, 2022

PFAS Mix increased hepatic steatosis in pups

Marques et al., *Toxicology*, 2022

PFOA and PFAS Mix markedly shift the proteome in offspring livers

Kaye et al., In preparation.

PFOA and a PFAS Mix induce the highest number of protein changes in offspring liver

Kaye et al., Abstract #3080, In preparation.

PFOA and a PFAS Mix induce the highest number of protein changes in offspring liver

- PFOA and PFAS mix increase lipid catabolism, transport, and synthesis pathways.
- PFHxS some activity
- PFOS least activity
- PFOA driver?

Kaye et al., In preparation.

What were the top hits for liver proteins?

Kaye et al., In preparation.

Brain Response Differed Significantly from Liver

- <u>PFHxS</u>>PFOA>PFOS (Brain) verus PFOA>PFHxS>PFOS (liver)
- PFOA levels increased in HFD-PFOA
- PFOA levels decreased with mix
- PFHxS unchanged with diet or PFAS mix

Agudelo et al., In preparation.

Unlike liver, PFHxS was the most active modulator of the brain proteome

- The largest # of protein expression changes was observed in the SD-PFAS mix offspring
- PFHxS most active
- PFOS > PFOA

Conclusions – In Vivo

Maternal treatment with a PFAS Mix in combination with exposure to a high fat diet increased measures of hepatic steatosis in mice offspring.

Diet and presence of other PFAS influenced serum and liver concentrations (very important to measure tissue concentrations!!)

➤The offspring proteome was most changed by PFOA and PFAS Mix

➢Brain concentrations and proteomic response differed from liver

Bad Actors??

SOME Bad Actors

- PFOA appeared to drive much of the response in liver
- PFHxS very active in human hepatocyte model

SUM Bad Actors

- We do observe examples of synergistic behavior (PFAS mix induced liver pathologies and proteome changes in offspring)
- PFAS mix seemed to shifted brain and liver proteome the most

Acknowledgments

- NIH 1P42 ES027706, URI College of Pharmacy
- URI-HARVARD STEEP SRP
 - Dr. Rainer Lohmann, URI, GSO
 - Dr. Elsie Sunderland, Harvard Univ.
 - Dr. Jiktka Becanova, URI, GSO
 - Dr. Geoff Bothun, URI, COE
- Slitt Laboratory
 - Emily Marques, Juliana Agudelo, Emily Kaye, Sadegh Modaresi, Marisa Pfohl, Nick DaSaliva
- Dr. Michael Goedken, Rutgers University
- Fatemeh Akhlaghi, URI

Benjamin Barlock

- Rohitash Jamwal
- Dr. Sue Fenton, NIEHS

Thoughts for the PFAS field

- Cell culture conditions can be critical for evaluating PFAS
- Diet-PFAS interactions are complex
- PFAS-PFAS measures are complex. Could have PFAS-PFAS competition for certain tissues, especially at high concentrations.
- ***** Measuring tissue concentrations is an absolute <u>*must*</u> to related to tissue outcomes.
- Robust discussion about models, concentrations, etc. needed to design experiments that are informative.
- ***** Evidence that PFAS in a mix has more activity than the PFAS alone.

Thank You!

