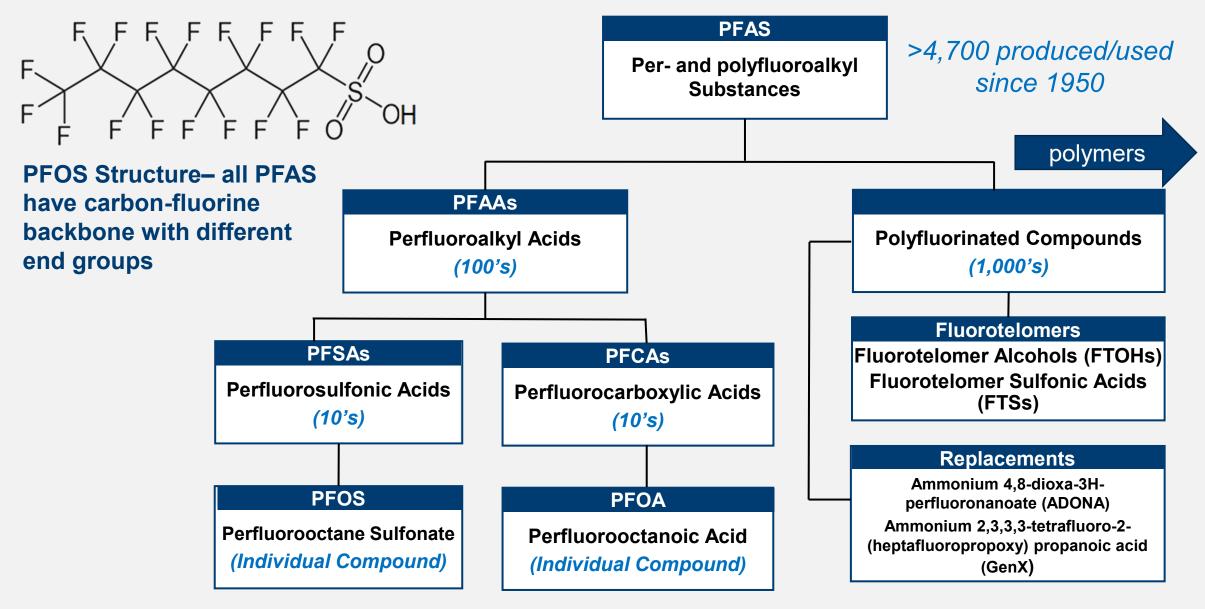
PFAS Air Emissions from Solid Waste Landfills – Sources, Measurement Methods and Other Considerations

Science of PFAS Conference Marlborough, MA April 5, 2022

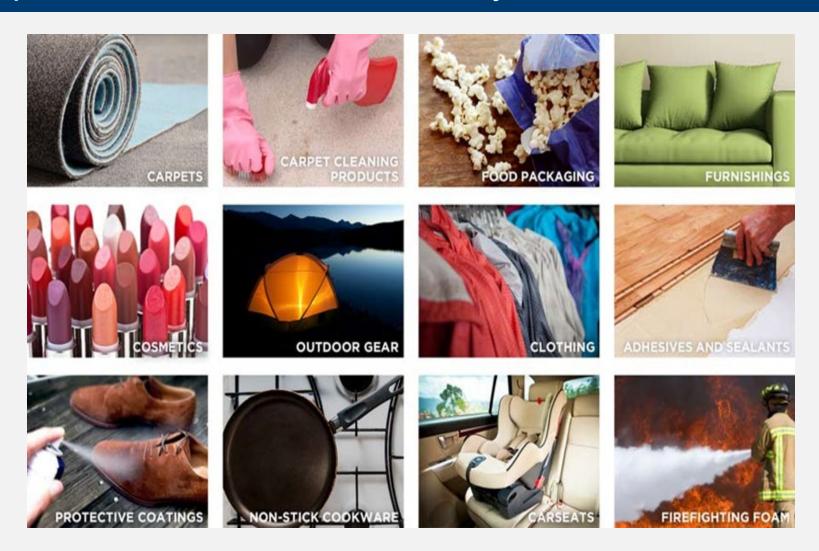
Gary Hunt TRC Technical Director Air Sciences and Vice-President

Presentation Topics



PFAS Primer

- Sources of PFAS in Solid Waste Placed in Landfills
- Potential PFAS Emissions Sources in Solid Waste Landfills
- Methods for Measuring PFAS Air Emissions
- PFAS in Air Emissions from Landfills and Ambient Air Near Landfills



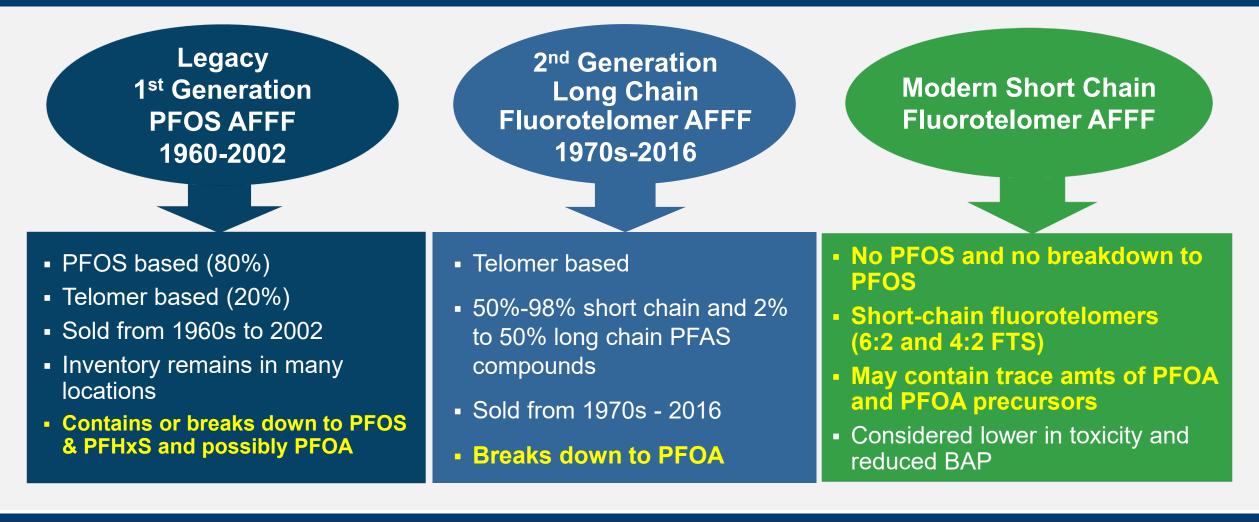
Some PFAS Sources Found in Solid Waste Landfills **TRC**

Historically consumer products contained PFAS; many still do!

- Stain resistant clothing/carpet /furniture
- Dental floss
- Non-stick cookware
- Food packaging (pizza boxes, microwave popcorn bags)
- Some ski waxes
- Paints/polishes
- Cleaning products
- Children's and pet products

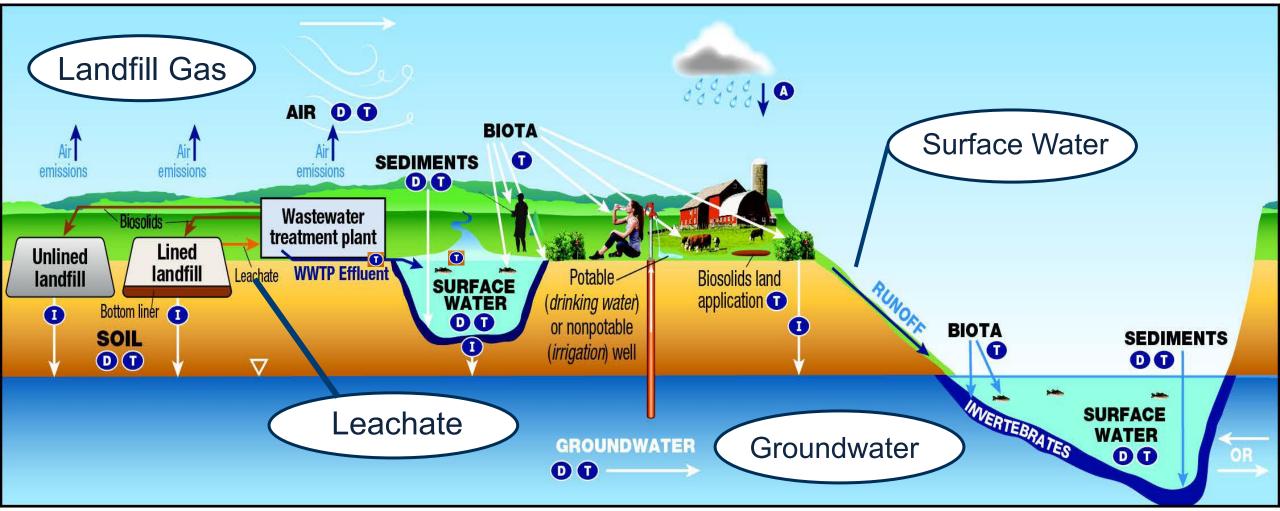
Some Manufacturing Sources of PFAS (ITRC, 2020) CTRC

Textiles and Leather Paper Products Metal Plating and Etching Wire Mfg.


Ind. Surfactants, Resins, Molds, Plastics

Photolithography and Semi-Conductors

Wastes as Sources of PFAS – Chemistry has Changed over Time



Compounds manufactured have evolved through time in all industries. For example, fire fighting foam (AFFF)

Potential Environmental Impacts of Landfills-Leachates and Air Emissions

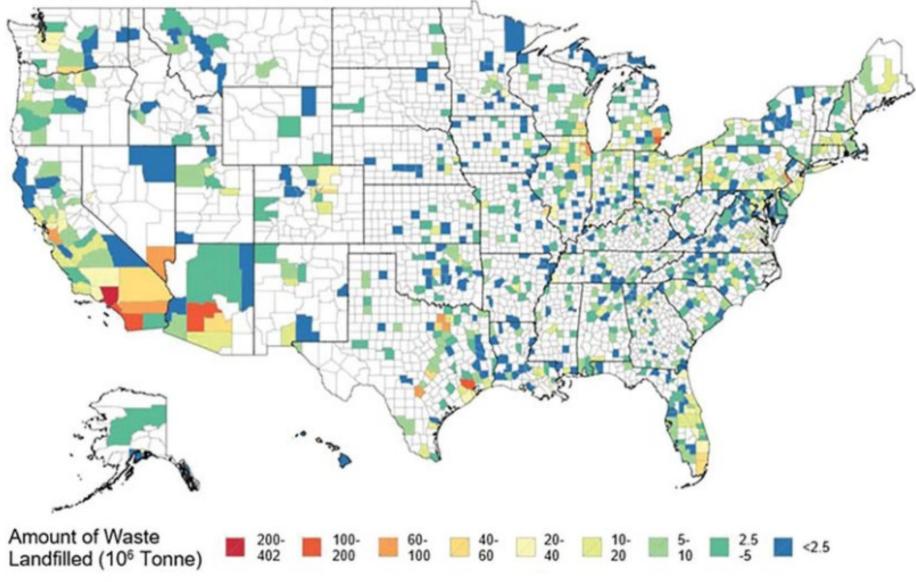
Adapted from Laura Trozzolo, TRC From: ITRC, (2018b)

KEY **(1)** Atmospheric Deposition

Diffusion/Dispersion/Advection

Infiltration

Transformation of precursors (abiotic/biotic)



Location of Landfills in the U.S. By County-They are Ubiquitous!!!

Credit:

Waste Informatics: Establishing Characteristics of Contemporary U.S. Landfill Quantities and Practices, September 2016, Environmental

Science & Technology, by Jon Powell, José Carlos Pons, and Marian Ruth Chertow, Yale University

Potential PFAS Air Emissions Sources in Solid Waste Management

- PFAS has been detected in ambient air downwind from landfills indicating air emissions
- PFAS in landfills is in the waste itself, dissolved in the leachate liquids, and present in landfill gases
- Because of water solubility, most PFAS will be in leachate
 - Leachate treatment can result in PFAS air emissions if sent to WWTP
 - Sewage sludge incineration results in PFAS air emissions
- Landfill gas has potential for air emissions
 - Escaping untreated gases (vents and fugitives)
 - Incomplete destruction in combustion can result in air emissions
 - Flares
 - Stationary Engines

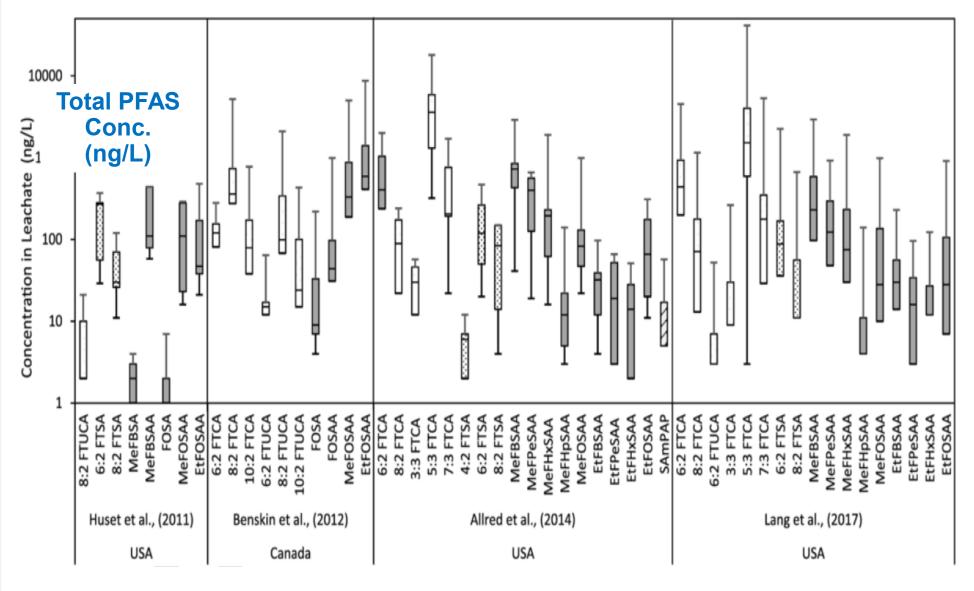
PFAS in Landfill Leachate

US Landfill Study (Lang et al., 2017) – 95 samples from 18 landfills

- > 70 PFAS measured, 19 PFAS detected in >50% of samples
- > PFOS: 3 to 200 ppt
- > PFOA: 100 to 1,000 ppt
- > Total PFAS: 2,000 to 29,000 ppt

➢ 5:3 FTCA (precursor) dominant in most leachates: 400 to 15,000 ppt

Canadian Landfill Study (Li, 2012) samples for 28 landfills


- PFAS detections in all 28 samples
- > PFOA detected in all samples, mean concentration of 439 ppt

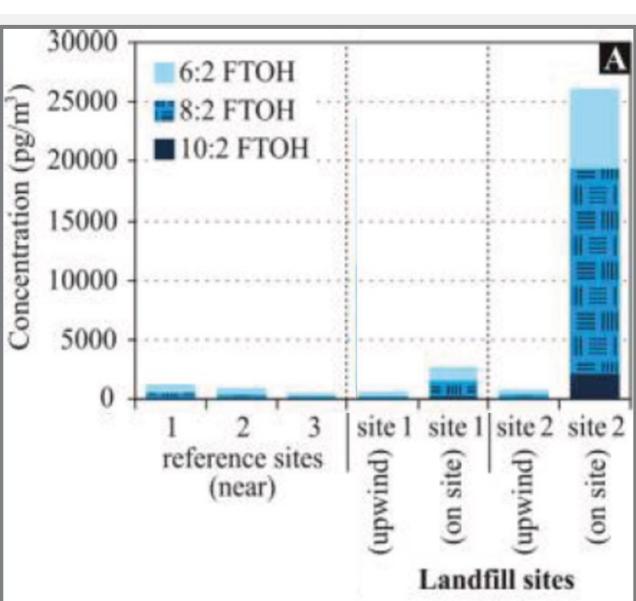
German Landfill Study (Busch, 2009) – 22 German landfills

- > 38 PFAS detected
- Total PFAS: 30.5 ppt to 13,000 ppt

PFAS in Landfill Leachates

TRC PFAS in Leachates and Cell Age 40 Total PFAS Conc. (mmol/L) ■Feb-13 \Box Jul-13 □ Oct-13 ■Feb-14 ∎ Jun-14 20 888 **- -**---0 Cell B Cell A Cell C Cell D TF Leachate Tank **Oldest** Youngest (Composite Cell Cell Sample)

Ref: Lang, J., et al., (2017)


Landfill Gases and Impacts on Ambient Air On Site

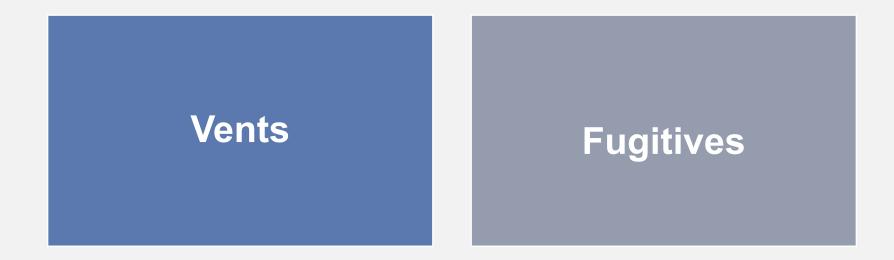
Research study by Ahrens, L., et al., (2011)

- Semi-volatile precursors are predominant
- 8:2 FTOH dominant compound
- PFAS in air 5 to 30 times higher at landfills vs. upwind background

Ref: Ahrens, L., et al., (2011)

PFASs (Other Sum)	FTOHs **	FOSAs/ FOSEs	Comment	Reference
130-320	2500-26000	60-120	Active Landfill	Ahrens 2011
5-10	70-100	6-20	Closed Landfill	Weinberg 2011

** FTOHs or Fluorotelomer alcohols like 8:2 FTOH have moderate volatility. These compounds can break down to form regulated PFAS such as PFOA and PFNA.. Significant PFAS (mostly FTOHs) emissions (> 1000 grams/year) have been estimated from landfills (Ahrens et al, 2011)


Landfill Gas Sources

Flare (~1,200° F or 650° C)

Note: PFAS Destruction Needs > 1,100° C for long periods of time. Much greater than typical flare temperatures Landfill Gas to Energy (Combustion Engine)

Direct Discharge (Old Landfills)

Types of Air Sampling Methods for PFAS

Dynamic Pumping / Active Sample Collection

- EPA OTM-45
 Sampling Train
- Low/High Volume Samplers Fitted with Sorbent Traps (e.g. XAD-2)

Canister
 Sampling- EPA
 Method TO-15

Whole Air

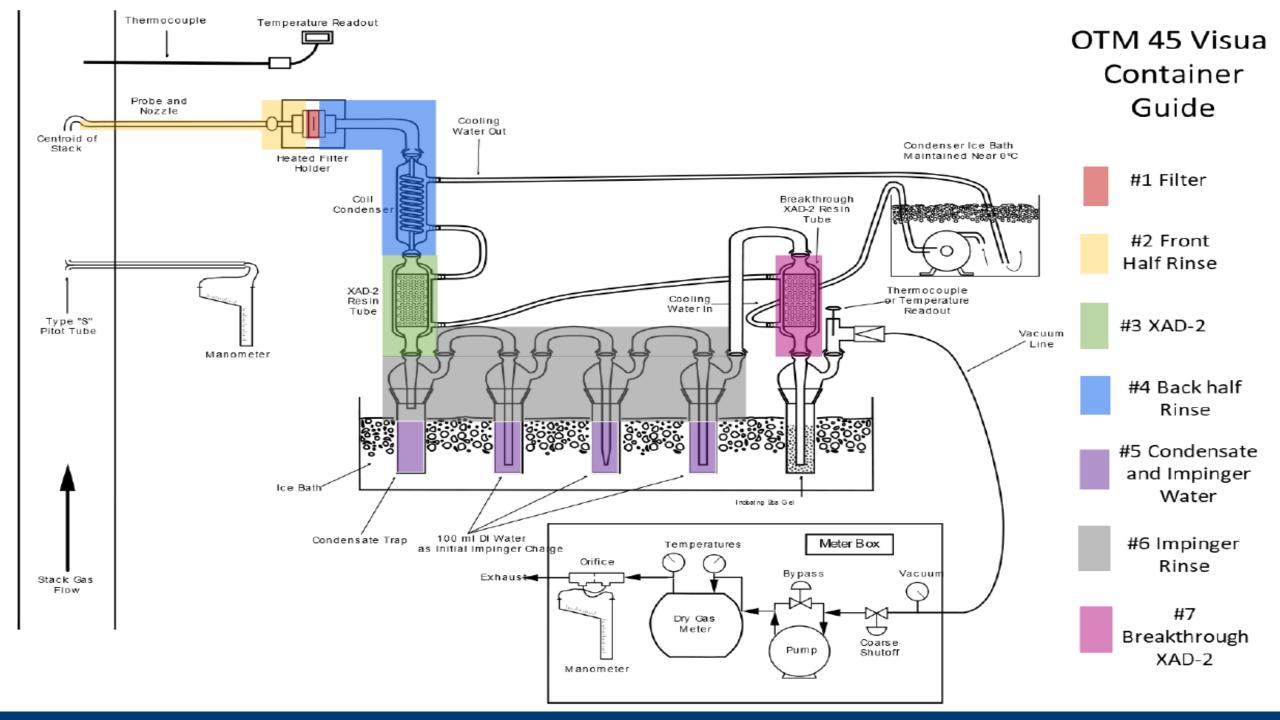
Sampling

Passive Sorbent Samplers

- Polyurethane Foam (PUF) Disks
- Sorbent (XAD-4) Impregnated PUF Disks

Other Test Method OTM-45 - Measurement of Selected PFAS Substances from Stationary Sources- USEPA

- Method meets EPA commitment identified within the 2020 National Defense Authorization Act guidance for PFAS disposal and destruction
- First EPA air emissions PFAS test method –very important to standardize the approach to sample collection
- EPA issued OTM-45 in January 2021
- Can be used for compliance and diagnostics testing
- Applicable to stationary sources such as landfill gas engines



OTM-45 Sample Train

- PFAS captured on a filter, XAD-2 sorbent, impingers, and 5% ammonium hydroxide in methanol rinses of sample train surfaces
- Second XAD-2 sorbent module after impingers for breakthrough determination
- Detailed glassware cleaning and sample recovery procedures to avoid PFAS contamination
- Clean room for recovery of samples is imperative
- No PFAS containing tools used for setup/sampling/recovery

- OTM-45 measures a specified set of ionic PFAS compounds (50 listed in method)
- QRLs are < 2 ng/m³ for 26 compounds (3 m³ gas sampled, lower DL if more volume sampled)
- OTM-45 does not measure:
 - Non-ionic PFAS (EPA looking at alternate rinse solvents)
 - Volatile PFAS (EPA evaluating Summa canister sampling)
 - PFAS not on the target analyte list (Non-target analysis methods in development)
 - Total Organic Fluoride (Sum of all PFAS via ion chromatography not possible if HF present)

Canister Sampling Train

Canister Sampling for **TRC Volatile PFAS**

The Principle of Operation

Use of differential pressure (Δ P) to induce flow of air at atmospheric pressure outside into an evacuated (under vacuum) canister. This flow is monitored using a controller in combination with a critical orifice.

Applicability

Ambient and source samples especially suitable for volatile PFAS such as FTOHs.

Photos courtesy of Alpha Labs

Features of Canister Air Sampling Method

• A whole air sample

- The sample and its chemical composition should represent a time weighted average (TWA) for each sampling interval.
- Interior surface (wall) of canister is inert (SUMMA coated).
- Vacuum gauge to monitor interior pressure of canister.
- Controller and critical orifice to regulate flow of air into canister.
- No power needed of course

EPA ORD Emissions Methods Development Research

Volatiles:

- Modified TO-15 for targeted and non-targeted compounds
- Using SUMMA canisters
- Limiting sample volume to avoid moisture condensation
- GC/MS analysis for targeted and non-targeted compounds
- On-Line Mass Spec for polar compounds

Source: USEPA Office of Research and Development, North Carolina 2019

TRC

Orifice Diameter Flow Rate Range		Canister Volume / Sampling Time				
(in)	(mL/min.)	1L	3 L	6L	15L	
0.0008	0.5–2	24 hr.	48 hr.	125 hr.	2	
0.0012	2.4	4 hr.	12 hr.	24 hr.	60 hr.	
0.0016	4-8	2 hr.	6 hr.	12 hr.	30 hr.	
0.0020	8-15	1 hr.	4 hr.	8 hr.	20 hr.	
0.0030	15–30		2 hr.	3 hr.	8 hr.	
0.0060	30-80			1.5 hr.	4 hr.	
0.0090	80–340			0.5 hr.	1 hr.	

Passive Sampling – Indoor Location

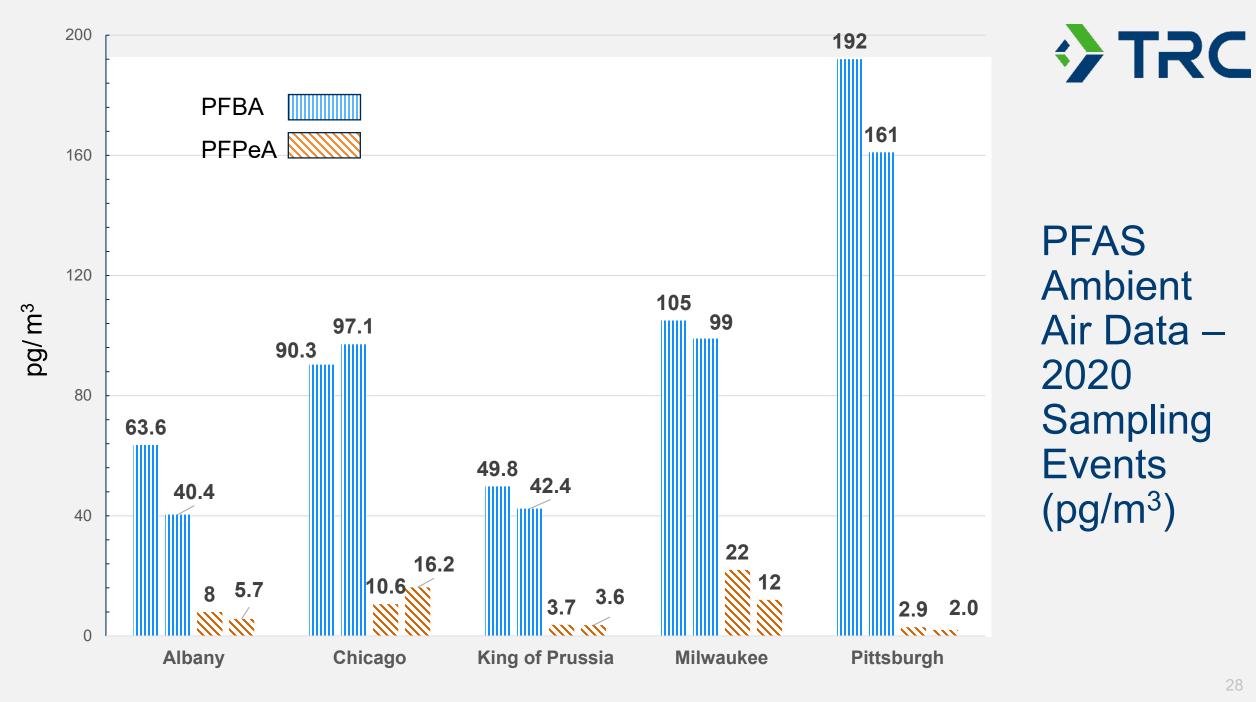
States Taking Lead in Setting PFAS Air Limits

Federal action on PFAS limits in air have been slow to develop. Some states have acted to set ambient air exposure limits:

Michigan (initial threshold screening level)

- PFOA Advisory level: 0.07 µg/m3
- PFOS Advisory level: 0.07 µg/m3

New Hampshire (ambient air; APFO is a specific PFAS compound)


- APFO Regulatory level (24-hour): 0.05 µg/m3
- APFO Regulatory level (annual): 0.02 µg/m3

Texas (occupational health)

- PFOA Advisory level (based on annual average): 0.005 µg/m3
- PFOS Advisory level (based on annual average): 0.01 µg/m3

New York (2021 annual guideline concentration)

- PFOA Advisory level (based on annual average): 0.0053 µg/m3
- NYSDEC classifying PFOA as a high-toxicity air pollutant, will set an annual source emission limit above which air dispersion modeling will be required to show compliance

PFAS Ambient Air Data – 2020 Sampling

PFAS Behavior in Solid Waste Combustion Treatment at Landfills Investigators: University of Vermont; Sanborn Head & Associates; Weston Solutions; North Carolina State University, Start Date: September 2021

- Measure PFAS emissions from combustion sources at landfill facilities and assess PFAS behavior in combustion systems
- Examine intra-and inter-facility emissions variability and characteristics
- Evaluate PFAS destruction efficiencies in LFG combustion sources
- Evaluate PFAS impacts to ambient air and exposure due to combustion emissions

Source: https://erefdn.org/pfas-behavior-in-solid-waste-combustion-treatment-at-landfills/

PFAS In Landfill Gas is Under Study

2020 Progress Report: Characterization and Quantification of per- and polyfluoroalkyl substances in landfill gas and estimate of emissions from U.S. Landfills

Research objective: Estimate mass of PFAS that are present in landfill gas (LFG) and the mass of PFAS emitted as fugitive emissions. Funded by EPA, project continues in 2022.

- Develop methods to sample and analyze LFG for targeted and non-targeted PFAS
- Measure PFAS concentrations at cross section of U.S. landfills in different climatic regions
- Develop a model to estimate PFAS production and emissions at the U.S. national scale
- Evaluate the potential impact of soil attenuation on PFAS emissions
- Measure gas-phase PFAS release from mixed waste and food packaging materials

Source: https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.highlight/abstract_id/10990/report/2020

- PFAS are likely present in most landfills as evidenced by leachate data
- All MSW landfills will likely contain PFAS waste
- PFAS amounts and chemistry may vary by age and sources of cells
- Emissions tests have been performed on a very limited number of facilities
- PFAS air test method development is a focus at EPA
- The solid waste management industry has potential PFAS air emissions from flares, stationary engines, vents and fugitive emissions from landfill gases
- Rapidly developing technology, regulations, and policy

Some References

- Ahrens, L., et al., 2011. Wastewater Treatment Plant and Landfills as Sources of Polyfluoroalkyl Compounds to the Atmosphere. Environ. Sci. Technol. Volume 45: pages 8089-8105.
- Allred, B., et al., 2015. Physical and Biological Release of Poly-and Perfluoroalkyl Substances (PFASs) from Municipal Solid Waste in Anerobic Model Landfill Reactors. Environ. Sci. Technol. Volume 49: pages 7648-7686.
- Benskin, J., et al., 2012. Per- and Polyfluoroalkyl Substances in Landfill Leach: Patterns, Time Trends, and Sources. Environ. Sci. Technol. Volume 46: pages 11532-11540.
- Guo, Z. et. al. Perfluorocarboxlic Acid Content in 116 Articles of Commerce, EPA/600/R-09/033, March 2009
- Hamid, H., et al., 2018. Review of the Fate and Transport of Per- and Polyfluoroalkyl substances (PFASs) in Landfills. Environmental Pollution. Volume 235: pages 74-84.
- ITRC, 2017. History and Use of Per- and Polyfluoroalkyl Substances (PFAS). Nov. 2017.
- ITRC, 2018a. Environmental Fate and Transport for Per- and Polyfluoroalkyl Substances. March 2018.
- ITRC, 2018b. Naming Conventions and Physical and Chemical Properties of Per- and Polyfluoroalkyl Substances (PFAS)
- Katarzyna, K.H., et al., 2017. Novel Treatment Technologies for PFAS Compounds: A Critical Review. Journal of Environmental Management.
- Lang, J., et al., 2017. National Estimate of Per- and Polyfluoroalkyl Substance (PFAS) Release to U.W. Municipal Landfill Leachate. Environ. Sci. Technol. Volume 51: pages 2197-2205.

TRC

Thank You

Gary Hunt Technical Director Air Sciences and Vice-President

978-656-3551 (TRC) ghunt@trccompanies.com