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PFAS Contamination in Soil

Point contamination
 AFFF-impacted sites

PFAS manufacturing facilities

Municipal landfills

Non-point contamination

Land application of PFAS-
containing biosolids and
reclaimed wastewater
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PFAS Contamination in Soil

* In U.S. and Canada, PFOA was detected in the range
of 42 to 5000 ng/L in landfill leachate, whilst PFOS
was from 9.5 to 4400 ng/L (Wei et al., 2019).

Monitoring
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Remediation of PFAS-contaminated soil

 Afew treatment and remediation approaches have been investigated for removing
PFAS from contaminated water and soil, including solvent flushing, photocatalytic
degradation, sequestration, ball milling, electrochemical approaches, and
hydrothermal methods.

* Inaninterim guideline, US EPA has identified thermal treatment as one of the
technological solutions that is commercially available and has the capacity to
degrade or manage the migration of PFAS in contaminated materials (EPA, 2020).



* This study was carried out to delineate factors that impact the fate of PFAS in soil during
thermal treatment and influence the selection and operation of thermal technologies for
the remediation of PFAS-contaminated sites.

PFOA GenX




Methodology
/ PFAS
Scenario #1 Scenario #2
Adsorption on soil from Adsorbed to soil
landfill leachate (free state)
PFAS laden soil
I
Thermal air degradation and pyrolysis
Extraction of residual PFAS from the soil
I
v v
Pyrolysis decomposition products UPLC-QToF- MS/MS

Y

TD-Pyr-CT-GC/MS




PFAS Chemicals and AFFFs

(o1 PFCAs (PFBA, PFPeA, PFHpA, PFOA, PFNA, PFDA, PFUnDA)
2. PFSAs (PFBS, PFHxS, PFOS)
PFAS < 3. Cationic and Zwitterionic (PFOAAmMS, PFOSAmS, PFOAB, PFOSB)
4. Anionic PFAS (N-MeFOSAA, 8:2 FTS, HFPO-DA, 6:2 CI-PFAES)
L 5. Two 3M AFFF samples
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Thermal decomposition
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Soils

Natural soil
(clay loam with soil organic mater of 9.8%)

Reference Kaolinite clay




Results

* Dashed line represents fitted
data by Freundlich model

 The Freundlich coefficient is 1.15-
1.48

e The value of (-AG!) follows the
order, PFBA < PFPeA < PFHpA <
PFOA, the same order as in the
number of perfluorinated
carbons, suggesting that the
hydrophobic effect is a major
driving force.
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Figure 1.
Adsorption of PFAS
on kaolinite in
landfill leachate




Heating Temperature

The thermal stability followed the order:
PFSAs > 6:2 CI-PFAES = 8:2 FTS ~ PFCAs >
N-MeFOSAA > HFPO-DA.

PFCAs started to decompose at 200-400
°C and decomposed almost completely in
30 min at >400 °C

PFSAs require higher temperature to
decompose.

Polyfluorinated ether sulfonate (6:2 Cl-
PFAES; the major component of F-53B)
appears to be more thermally stable than
the perfluorinated ether carboxylic acid
(HFPO-DA that is the conjugate acid of
GenX).

Near-complete degradation in soil for
Polyfluorinated compounds at >400 °C.
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Figure 2. Decomposition of PFAS after 30 min heating at different temperatures




Heating Time

* PFCAs mass dropped dramatically after 7
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Figure 3. Thermal decomposition of PFAS in soil as a function of heating time




(a) PFECA and PFCAs at 400 °C
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Yield of Fluoride

* The quantification of F was conducted
with US EPA SPADNS method and ISE

method in this study (e)-(f): Comparison of two F~ measurement methods

10+ : (::2::‘;3 measurements) ,"* 10+ --'--~FI-.IisnI(Eearfit ,'.
e The measurement of F by ion sal Linear fit of SPADNS method - T 6l
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 However, the detection limit of the
SPADNS method isonly2 mg F-/L; a Figure 5. comparison of F yield measurement
substantial dilution of a sample may
cause dilution errors




Yield Of Fluoride (a)-(c): F released from PFOA during thermal treatment with or without kaolinite
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3M AFFF samples
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Figure 7. Decomposition of PFSAs and polyfluoroalkyl substances
after 30-min treatment in soil at 500 °C.



Conclusions

* Different factors such as heating temperature, thermal treatment time, PFAS
chemistry, and the initial contamination level play a key role in PFAS degradation
in the contaminated soil.

* thermal treatment at moderate temperatures (e.g., ~500 °C during natural
wildfires) is highly effective in removing and decomposing a variety of PFAS in
soil and is highly suggested.

* The combination of appropriate temperature (=500 °C) and time (=30 min) lead
to a near complete decomposition of various PFAS compounds in the soil.

* Emission of F radicals (technological challenge in thermal treatment of PFAS due
to the formation of corrosive hydrogen fluoride) can be significantly reduced
with the presence of kaolinite.
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