Presentation for: PFAS: Forensic Tools, TOF, TOP Assay and Non-Target Analysis, Part 4

NaCH₂ 3/29/2022

Copyright © 2022 Eurofins

Charles Neslund Scientific Officer and PFAS Practice Leader

Environment Testing America

PFAS Forensic Tools

The tools for PFAS forensics are a developing area of applications. We currently have several tools already in use that can be applied towards forensic investigations;

- Chemical Fingerprinting
- Isomer comparison
- Applications of TOP Assay

Environment Testing America

PFAS Forensic Tools

Additional techniques that are gaining in use and application

- Total Organic Fluorine Analysis
- Non-Target Analysis

Benefits of Isotope Dilution

What affects the native analyte will equally affect the isotope

Copyright © 2022 Eurofins

User-Defined Methods: PUT TO THE TEST!

Biphasic
Biosolids
Tissues
Dispersions
Activated Carbon
Cosmetics

Concrete

NELAC
DoD ELAP
Client/Program
Specific Audits
Semiannual PT

NMI International Round Robin

DOW Study

>85% of all PFAS data includes a validation package
>300,000 sample data validated

Environment Testing America

TARGETED PFAS

Perfluorobutanoic acid (PFBA)	Perfluoro-1-nonanesulfonate (PFNS)	NFDHA	PFO4DA
Perfluoropentanoic acid (PFPeA)	Perfluorododecanesulfonic acid (PFDoS)	PFEESA	PFO3OA
Perfluorohexanoic acid (PFHxA)	Perfluoro-n-hexadecanoic acid (PFHxDA)	PFMPA	PFO2HxA
Perfluoroheptanoic acid (PFHpA)	Perfluoro-n-octadecanoic acid (PFODA)	PFMBA	PFO5DA
Perfluorooctanoic acid (PFOA)	NMeFOSAA	3:3 FTCA	R-EVE
Perfluorononanoic acid (PFNA)	NEtFOSAA	5:3 FTCA	NVHOS
Perfluorodecanoic acid (PFDA)	NEtFOSA	7:3 FTCA	Hydro-EVE Acid
Perfluoroundecanoic acid (PFUnA)	NMeFOSA	6:2 FTCA	EVE Acid
Perfluorododecanoic acid (PFDoA)	NMeFOSE	8:2 FTCA	R-PSDA
Perfluorotridecanoic Acid (PFTriA)	NEtFOSE	10:2 FTCA	Hydrolyzed PSDA
Perfluorotetradecanoic acid (PFTeA)	4:2FTS	6:2 FTUCA	R-PSDCA
Perfluorobutanesulfonic acid (PFBS)	6:2FTS	8:2 FTUCA	PS Acid
Perfluorohexanesulfonic acid (PFHxS)	8:2FTS	10:2 FTUCA	Hydro-PS Acid
Perfluoroheptanesulfonic Acid (PFHpS)	10:2FTS	PFECHS	4:2 FTOH
Perfluorooctanesulfonic acid (PFOS)	DONA	PFPrS	6:2 FTOH
Perfluorodecanesulfonic acid (PFDS)	HFPO-DA (GenX)	PFMOAA	7:2S FTOH
Perfluorooctane Sulfonamide (FOSA)	11Cl-PF3OUdS	PFECA G	8:2 FTOH
Perfluoro-1-pentanesulfonate (PFPeS)	9CI-PF3ONS	МТР	10:2 FTOH
PFPrA	PMPA	PEPA	

🛟 eurofins

Environment Testing

America

THE

Copyright © 2022 Eurofins

Mg Land

Additional PFAS Methods

Fluorotelomer Alcohols

- GCMSMS method
- Water and solids

🔅 eurofins

- Instrumental set-up like 8270E and extractions like 3510 and 3540/50
- Current compound list

Environment Testing

America

4:2 Fluorotelomer alcohol 6:2 Fluorotelomer alcohol 7:25 Fluorotelomer alcohol 8:2 Fluorotelomer alcohol 10:2 Fluorotelomer alcohol

Chemical Fingerprinting

Herzke, et al., 2012, Chemosphere, 88, 980-987

eurofins

Environment Testing

America

Isomer Comparison

 $F_{3}C-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-CF_{2}-SO_{3}^{-1}$

Linear Perfluorooctane sulfonate (PFOS)

F₃C-CF-CF₂-CF₂-CF₂-CF₂-CF₂-SO₃⁻ Branched Perfluorooctane sulfonate (PFOS)

CF₃

Figure 4-1. Linear and one branched isomer of PFOS

ITRC PFAS Fact Sheet Naming Conventions April 2020

🔅 eurofins

Environment Testing

America

Copyright © 2022 Eurofins

Isomer Comparison

Chromatogram of PFOS Standard of Linear Isomer

Chromatogram of PFOS Standard of Branched/Linear Mix Typical Ratio

Copyright © 2022 Eurofing

Isomer Comparison

Chromatogram of PFOS Sample with Branched/Linear Mix High Bias Ratio

Chromatogram of PFOS Sample with Branched/Linear Mix Low Bias Ratio

181 PP

Total Oxidizable Precursors - TOP

🔅 eurofins

Environment Testin

America

Results of oxidation of 6:2 Fluorotelomer sulfonate at 250 ng/l

PFCA	ELLE	Houtz		
PFBA	21.6	22		
PFPeA	43.6	27		
PFHxA	16.1	22		
PFHpA	2.4	2		
PFOA	0.3	0		
PFNA	0.0	0		
PFDA	0.0	0		
PFUnDA	0.0	0		

Molar Yield

Results of oxidation of 8:2 Fluorotelomer sulfonate at 250 ng/l

PFCA	ELLE	Houtz
PFBA	9.9	11
PFPeA	16.1	12
PFHxA	19.4	19
PFHpA	36.1	27
PFOA	15.9	21
PFNA	3.1	3
PFDA	0.0	
PFUnDA	0.0	

Molar Yield

Copyright © 2022 Eurofins

TOP Assay – Other Precursors

🛟 eurofins

Environment Testing

America

10:2 FTS

ST. Party

The selfe

TOP Assay Results

Compound	Pre-Ox	Post-Ox	Difference
PFBA	ND	98 ng/l	98 ng/l
PFPeA	ND	87 ng/l	87 ng/l
PFHxA	5 ng/l	61 ng/l	56 ng/l
6:2 FTS	100 ng/l	ND	- 100 ng/l
PFHpA	11 ng/l	32 ng/l	21 ng/l
PFOA	7 ng/l	26 ng/l	19 ng/l
PFOS	56 ng/l	52 ng/l	- 4 ng/l
8:2 FTS	26 ng/l	ND	- 26 ng/l
PFNA	ND	5 ng/l	5 ng/l

St. Party

Total Organic Fluorine Analysis

Marriage of TOX and IC

Sample (or treated sample) is combusted in a furnace at $900^{\circ}C - 1100^{\circ}C$

Effluent collected in buffer and injected into ion chromatograph (IC)

Quantify fluorine (as fluoride) content

Compare ratio of total (or extractable) fluorine to total PFAS

Oxidative pyrohydrolytic combustion Handling of the sample prior to fluoride determination determines result evaluated EOF – Extractable Organic Fluorine

AOF – Absorbable Organic Fluorine

Total Organic Fluorine Analysis in Water

Adsorbable Org. F (AOF)

- Sample Prep
 - 100mls sample pass thru activated charcoal bed(s)
 - Final wash with nitrate solution to remove inorganic fluoride
- Combustion of Charcoal into CIC to measure F⁻ by IC

Extractable Org. F (EOF)

- Sample Prep
 - 100mls sample pass thru weak anion exchange (WAX) SPE
 - Elute PFAS with methanol
 - Concentrate
 methanol to final
 1mL
- Combustion of extracted sample into CIC to measure F⁻ by IC

Total Org. F (TOF)

- Sample Prep (water samples)
 - No Sample Prep
- Direct injection of aqueous sample into CIC system to measure both Inorganic F⁻ and Organic F⁻ simultaneously

Courtesy of Dr. Jayesh Ghandi - Metrohm

Non-Target Analysis

LC-QToF-MS

Liquid Chromatography Quadrupole Time of Flight Mass Spectrometry

Non-Target Results

						h	17. 1 1 1 1	
#	Analyte Peak Name	Precursor Mass	Found At Mass	Library Hit	Library Score	Formula Finder Results	Formula Finder Score	Combined Score
47	207.1384 / 9.59	207.140	207.1386	Ser-Cys (NIST)	86.3	C13H20O2	77.080	81.702
75	205.1582 / 10.62	205.159	205.1591	Met-Gly (NIST)	82.3	C8H23N4P	83.194	82.724
93	271.2263 / 11.21	271.227	271.2271	DLbetaHydroxypalmitic acid (NIST)	81.8	C16H32O3	68.518	75.154
119	265.1468 / 12.04	265.148	265.1472	Dodecyl sulfate (NIST)	99.3	C8H24N6P2	78.457	88.862
127	199.1699 / 12.08	199.171	199.1699	Dodecanoic acid (NIST)	93.5	C12H24O2	81.919	87.725
128	297.1516 / 12.16	297.153	297.1520	Ricinoleic acid (NIST)	97.5	C8H21F2N8P	89.209	93.349
129	205.1591 / 12.22	205.160	205.1592	2,6-Di-tert-butylphenol (NIST)	100.0	C8H23N4P	82.310	91.155
130	297.2424 / 12.22	297.243	297.2428	Ricinoleic acid (NIST)	97.5	C18H34O3	71.444	84.466
146	514.9789 / 12.55	514.980	514.9792	CI-PFOS (chloro-perfluorooctane sulfonate) (neg)	89.8	C8H13FN6O15S2	98.473	4.123
152	309.1728 / 12.64	309.174	309.1733	Ethylene glycol dodecyl ether sulfate (NIST)	100.0	C14H30O5S	73.122	86.561
168	531.0069 / 12.94 M- H-	531.008	531.0081	CI-PFENS neg	81.5	Too many formula	0.000	40.743
171	353.1999 / 12.94	353.201	353.1996	Diethylene glycol dodecyl ether sulfate (NIST)	99.6	C15H29F3N4S	91.220	95.397
176	241.2162 / 13.06	241.217	241.2165	N2-Trifluoroacetyl-L-glutamine (NIST)	89.3	No formula found	0.000	44.666
192	293.1788 / 13.45	293.180	293.1784	Myristyl sulfate (NIST)	97.8	C14H30O4S	73.162	85.459
216	253.2158 / 14.02	253.217	253.2168	cis-7-Hexadecenoic acid (NIST)	97.8	C16H30O2	77.687	87.726
220	339.1986 / 14.08	339.200	339.1991	Tridecylbenzenesulfonic acid (NIST)	80.2	C13H33N4O2PS	89.239	84.697
260	281.2480 / 14.90	281.249	281.2479	1,4-D-Xylobiose (NIST)	100.0	C18H34O2	73.760	86.880
300	407.2938 / 15.97	407.295	407.2942	.gammaMuricholic acid (NIST)	96.5	C21H37FN6O	95.929	96.220
327	311.2943 / 17.36	311.295	311.2943	Benzenesulfonic acid, 4-undecyl- (NIST)	76.3	C16H36N6	53.227	64.777
434	265.1465 / 26.87	265.148	265.1470	Dodecyl sulfate (NIST)	84.6	C13H27FS2	84.840	84.720

🛟 eurofins

Environment Testing

1 100

America

Copyright © 2022 Eurofins

Shannout

-

STALL DO

معصالين وم

Non-Target Results

Copyright © 2022 Eurofins

ANNUAL OF

eurofins

Environment Testing

America

Non-Target Analysis

eurofins Environment Testing America

Targeted PFAS

All Matrices – Up to 80 Compounds

Strengths: Selectivity, Sensitivity at ~1-5ppt Can be used for risk assessment Weaknesses: Limited list of compounds

Non-Target Analysis

All Matrices – Unknowns

Strengths: Ability to identify 'unknowns' with specificityAbility to conduct novel compound identificationWeaknesses: Limited to current librariesLimited quantitation

• TOP Assay All Matrices – Oxidizable Precursors

Strengths: Sensitivity at ~1-5ppt

Specific to 'unknowns' with potential to convert to risk drivers

Weaknesses: Not specific

Does not complete a mass balance

Total Organic Fluorine

All Matrices – Organic Fluorine

Strengths: Closest to a mass balance **Weaknesses:** Sensitivity at ~1ppb No selectivity

Copyright © 2022 Eurofins

QUESTIONS?

Charles.Neslund@ETEurofinsUS.com 717-799-0439

🛟 eurofins

Environment Testing America

THANK YOU

Environment Testing America