

SAFF® Surface-Active Foam Fractionation

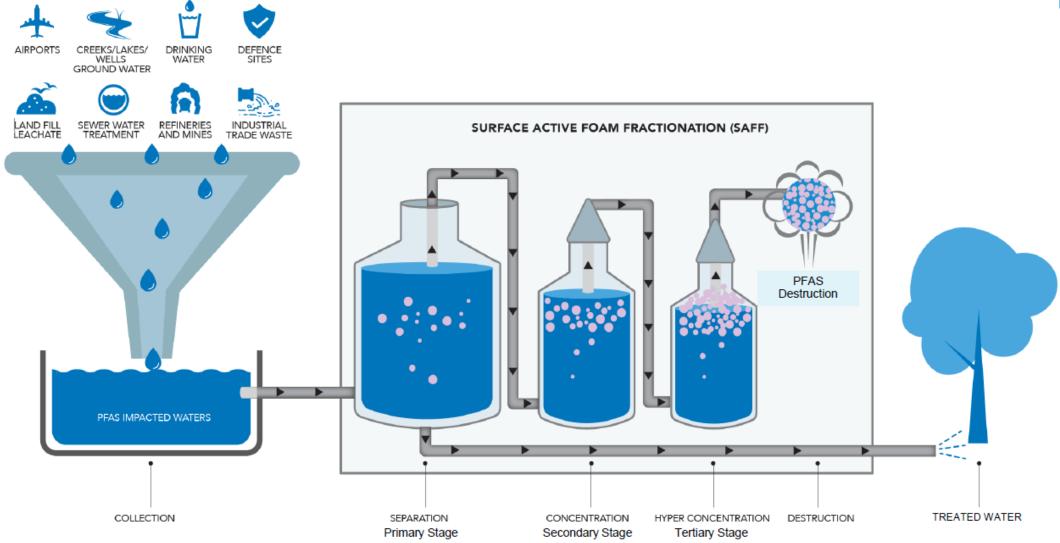
Sustainable Lead Treatment in a Multi-Stage Wastewater Treatment Plant

Presenting for David Burns (EPOC Enviro) is Dr. Kent Sorenson, Allonnia (US Distributor)

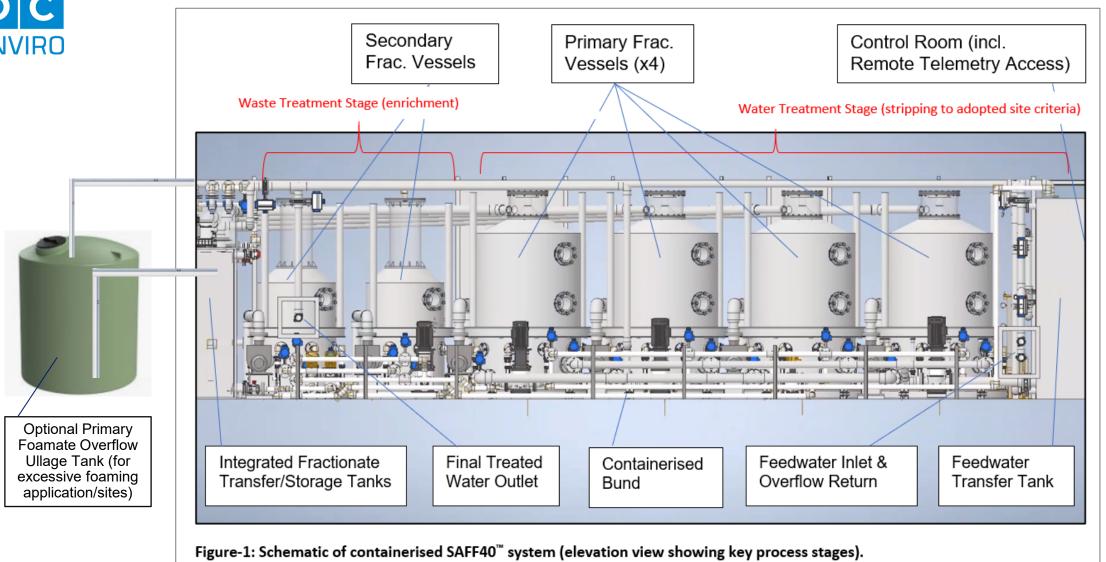
CASE STUDY FOCUS

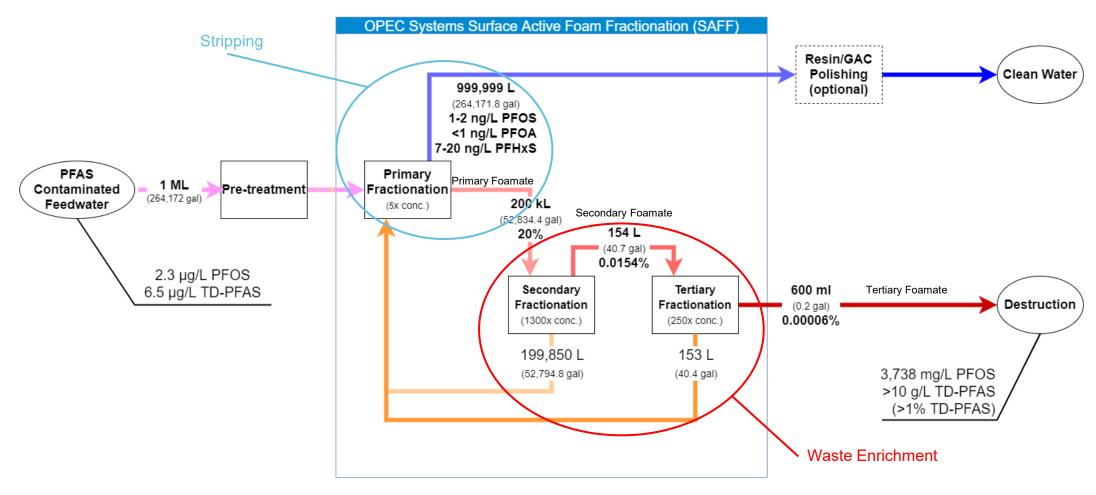
Waste Water: Landfill Leachate, Telge Sweden.

- Supplied from Australia
- Remote Monitoring/Control + Field Control
- Installed Jan 2021
- o Contract: 330m³/day
- Criteria: 50ng/l (PFÓS)
- Performance: 200-500m³/day (catchment vol. dependent)
- Rem. J. article (in-submission)


SAFF® TECHNOLOGY EVOLUTION & UNDERSTANDING

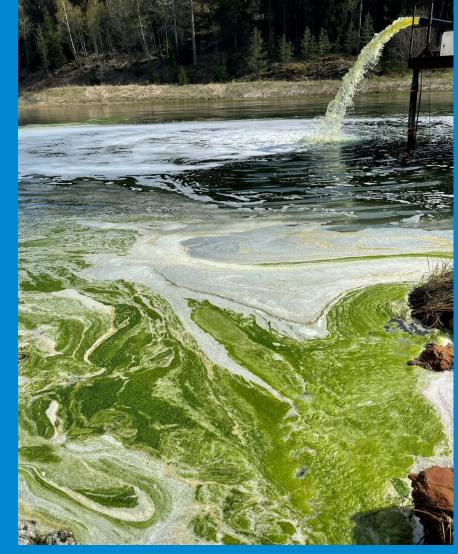
- 1) Laboratory Bench-scale Technology comparison study (2015/2016).
- 2) Dedicated Treatability Lab (2016-Present), socializing R&D with desktop SAFF Loan Apparatus (5x sites).
- 3) First SAFF40 ex-situ GW treatment field trial, Oakey Australia (2019).
- 4) Second SAFF40 ex-situ SW (leachate) field trial, Telge Sweden (Jan 2021).
 - Contractual Objective: remove PFOS <50ng/l (15ML landfill leachate catchment characterized by complex chemistry, excessive foaming and a much broader suite of PFAS compounds compared to the Oakey 3M Lightwater® suite.
 - Results: improved stripping recoveries for both long and short chain PFAS, most likely due to the non-PFAS amphiphilic substances also present in the leachate feed.
- 5) SAFF® waste foamate (super-concentrate) is suited for pairing with on-site waste destruction cells (e.g. CDM Smith's ECO®, AECOM's Defluoro®, Battelle's Annihilator®, etc.
- 6) <u>Eight</u> SAFF units in field trial + <u>Four</u> pre-delivery to further field prove US-ITRC Technology status.


HOW DOES IT WORK?



SAFF40® CONTAINER

SAFF® CONCENTRATION PROCESS



MODE OF TRANSPORTATION TO SITES (Winter Jan. 2021; Telge, Sweden)

LEACHATE CATCHMENT (Spring 2021; Telge, Sweden)

Telge Leachate Data (in-submission with Rem. J.)

E P O C

PERFORMANCE DATA

- Water Treated as of 31st Oct. 2021: 72.5ML (US conversion 19MG), zero contractual failures.
- Enrichment/Concentration of final tertiary foamate (PFAS waste) estimated at 20,000x to 100,000x (pending further validation).

Table-1: SAFF40 Primary Fractionation/Stripping Results, 23x Sampling/testing Events, Jan. 2021 – Oct. 2021.

				Removal Percentage	Full Scale Treatment Results (Jan. to Oct. 2021)				
Swedish SLV-11 PFAS Suite				Predictability model (1)	Bench Scale Testing (1,4)	Av. Feedwater Conc. ⁽²⁾	Av. Treated Water Conc.		Treated Water Removal Percentage (4)
Adsorption Isotherm Coefficient (7) (K _H m[x10 ⁶] C-chain			C-chain	Aeration 21mins	Aeration 15-60mins	(ng/l)	(Site Adopted Criteria)	(ng/l)	Aeration 21mins
1.	PFDA	-	C10	100%	80% (5)	4.9	-	1.0	79% ⁽⁷⁾ , 98% ⁽⁶⁾
2.	PFNA	9.3	С9	100%	97% (5)	83	-	<u><</u> 0.97	99% (7), 99.9% (6)
3.	6:2-FTS	-	C8	100%	73% ⁽⁵⁾	41	-	<u><</u> 0.95	100% (5)
4.	PFOS	23	C8	98%	96-100% ^(4,5)	191	50	<u><</u> 2.3	100% ⁽⁴⁾ , <u>></u> 98.8% ⁽⁶⁾
5.	PFOA	2.3	C8	98%	98-100% ⁽⁵⁾	586	-	≤1.3	99.8% (7), 99.9% (6)
6.	PEHPA	0.58	C7	85%	96-99% ⁽⁵⁾	275	-	6.4	98% (7), 98% (6)
7.	PFHxS	0.97	C6	98%	98-99% ⁽⁵⁾	97	-	<0.98	99.0% (7), 99.9% (6)
8.	PEHxA	0.22	C6	50%	36-77% ⁽⁵⁾	541	-	329	39% (5)
9.	PEPeA	0.058	C5	<20%	7-20% ⁽⁵⁾	531	-	493	7.1% (5)
10.	PFBS	0.18	C4	<5%	19-42% ⁽⁵⁾	112	-	92	17% ⁽⁵⁾
11.	PFBA	0.017	C4	<1%	6-18% ⁽⁵⁾	317	-	318	Nil.
∑ Detectable PFAS (SLV-11)				-	-	2,770	90 (3)	1249	55% ⁽⁵⁾

- Primary Fractionate (foamate) was discharged back to the leachate catchment whilst validating, demonstrating PFAS stripping.
- Secondary & Tertiary
 Foamate returned to
 leachate catchment
 whilst validating,
 demonstrating process.

Table-1 Footnotes

- (1) Desktop Audit means review of historical lab reports, Bench testing means experiments using lab apparatus and site water,
- Approx. 500m³ feedwater treated for commissioning phase, refer to site details overleaf,
- SLV-11 PFAS criteria (drinking water) not applicable to waste-water effluents, currently observed as a reference trend.
- 4) Removal percentage (%R) is calculated by comparing treatment results to the Site Adopted Criteria (PFOS 50ng/l; REVAQ certification system),
- (5) Removal percentage (%R) is calculated by comparing treatment results to the reported laboratory LOR,
- 6) Removal percentage (%R) is calculated using the "liberal" data treatment process (where <LOR results are treated as being equal to zero),
- (7) Removal percentage (%R) is calculated using the "conservative" data treatment process (where <LOR results are treated as being equal to 95% of the reported LOR), and
- Adsorption coefficient PFÁS species in de-ionised water-air interface at pH7, Brusseau (2019).

TREATMENT IMAGES FROM SWEDISH TELGE LANDFILL SITE

PERFORMANCE DATE: RATES OF REMOVAL

KEY POINTS

Stripping with water recirculation.

(1) PFOS: 10 mins

(2) PFOA: 12 mins

(3) PFHxS: 18 mins

OPEX (O&M) COSTS FOR TELGE LANDFILL LEACHATE SITE

Total OPEX – USD \$0.12/m³ (treated)

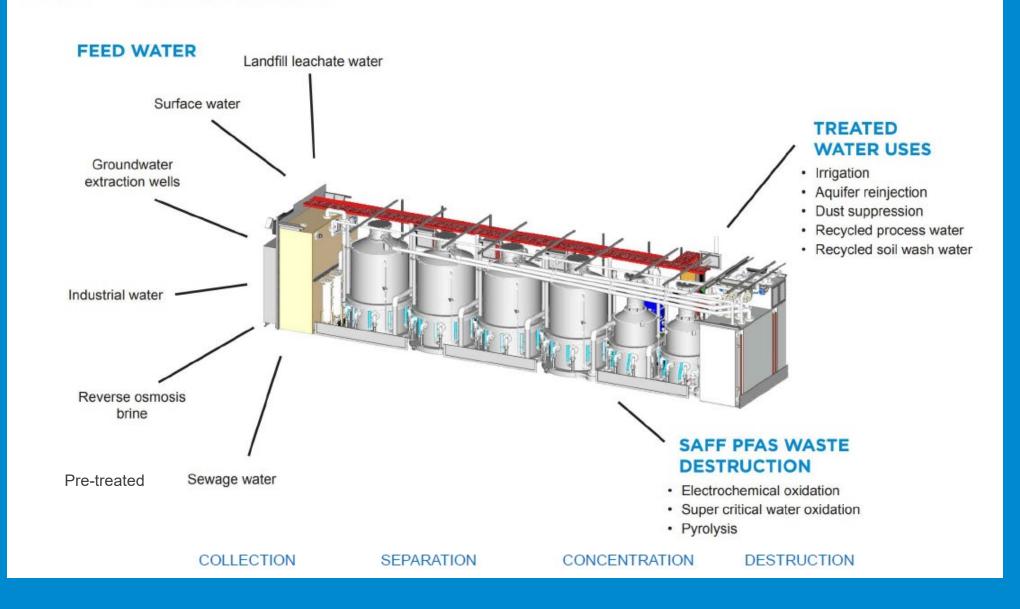
AACO GW DATA (REM. J. SEPT. 2021)

PERFORMANCE DATA

- Water Treated as of Feb 2022: 75ML (US conversion 20MG), zero contractual failures.
- Removed PFAS concentrated into 32L (provided to destruction cell developers under direction from Aust. Defence).

Table-1: AACO GW (QLD< Australia) SAFF40 Primary Fractionation/Stripping Results, Oct. 2019 to Oct. 2021.

				Removal Perce	Full Scale Treatment (Twelve Month Average Performance)				
NEMP (2020) PFAS Suite				Predictability Model (1)	Bench Scale Testing (1.4)	Feedwater Conc. ⁽²⁾	Treated Water Results		Treated Water Removal Percentage (4)
Adsorption Isotherm (⁵⁾ Coefficient C-chain (<i>KH</i> m[x10 ⁶]				Aeration 21mins	Aeration 15-60mins	(ng/l)	(Site Criteria)	(ng/l)	Aeration 21mins
P1	PFOS	23	С8	98-99%	98% (4)	2,790	70	<u><</u> 4	99.8% (4)
P2	PFOA	2.3	С8	98-99%	98% (4)	480	560	<u><</u> 1	99.8% ⁽⁴⁾
P3	PFHxS	0.97	C6	95-97%	97% ⁽⁴⁾	1,030	70	≤ 17	98.4% ⁽⁴⁾
P4	Combined PFOS + PFHxS		96-98%	97-98% ⁽⁴⁾	3,810	70	<u><</u> 11	99. 1 % ⁽⁴⁾	
1.	8:2-FTS	-	C10	100%	98% (4)	32	_	<u><</u> 1	100% (4)
2.	PFDA	-	C10	100%	98% (4)	156	_	<u><</u> 3	98.8% (4)
3.	PFNA	9.3	C9	100%	98% (4)	116	_	<u><</u> 1	100% (4)
4.	6:2-FTS	_	C8	100%	98% (4)	100	_	<u><</u> 6	100% (4)
5.	PEHpS	5.1	C7	95%	75% ⁽⁴⁾	104	_	<u>≤</u> 20	80.8% (4)
6.	PEHpA	0.58	C7	95%	70% (4)	367	_	68	81.5% ⁽⁴⁾
7.	PEHXA	0.22	C6	<50%	51% ⁽⁴⁾	755	_	402	46.7% ⁽⁴⁾


Table-1 Footnotes

- Predictability modelling means a review of historical lab reports, Bench scale testing means experiments using lab apparatus and site water.
 Approx. 30,000m³ feedwater treated, refer to site details overleaf.
- Australian & New Zealand Heads of EPA (HEPA) NEMP (2020) PFAS drinking water criteria adopted as site criteria for treatment purposes.
-) Removal percentage (%R) is calculated by comparing treatment results to feed and trace lab LOR (1.0 ng/l), 6:2-FTS (5.0 ng/l).
- (5) Adsorption coefficient PFAS species in de-ionised water-air interface at pH7, Brusseau (2019)

- Groundwater
- Concentration Factor (also known as waste Enrichment) not restricted by excessive foaming in feedwater nor secondary, tertiary foamate processing.

SAFF - VERSATILITY

PROJECTS

E P O C

SAFF40 Commercial Scale Progress

- SAFF40: Oakey, Australia
 - Installed Dec 18
 - 70,000 m³ treated
- SAFF40-001: Telge (Sodertelje), Sweden
 - Arrived Feb 2021
 - 72.5m³ treated
 - No pre-treatment except bag filters
- SAFF40-002: Malmo Sweden
 - Arrived 2 August, 2021
 - 2.000, m³ treated
 - No pre-treatment except bag filters
- SAFF40-003: CDM Smith, USA
 - Arrived 31 August, 2021
 - Commissioned Sep, 2021
- SAFF20-001 Arlanda, Sweden
 - Arrives 31 November, 2021
- SAFF20-002 California, USA
 - Arrives 31 February, 2022

Oakey, Australia

CDM Smith East Coast, USA

Gothenburg, Sweden

Sodertelje, Sweden

RESEARCH

SAFF Sponsored Research

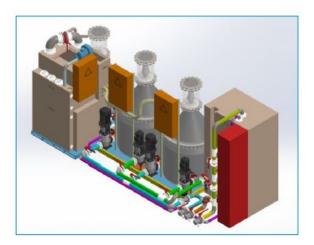
- ARC Grant Soil Liqui-Fractionation
 - PFAS impacted soil treatment for surface soils
 - \$900k (+\$160k from OPEC), 3 years
 - MQU and UNSW, Commenced 2020
- ESTCP (USA) In trench fractionation
 - Funnel and gate approach to PFAS impacted groundwater treatment
 - US\$1.4M, 2 years, Commences Sep 2021
- Horizon 2020 (EU) PFAS Remediation (SCENARIOS)
 - PFAS remediation study with SAFF20
 - €1.45M 2 year large scale field trials
 - Sites in Spain and Sweden, Commences 2022
- Horizon 2020 (EU) PFAS Remediation (LIFE SOURCE)
 - PFAS remediation study with SAFF20
 - €1.05M 2 year large scale field trials
 - Sites in Germany and Italy, Commences 2022
- Ramboll Norway AFFF Manufacturing Site
 - PFAS in soil lab and field trials
 - €200,000 3 month lab/field trial
 - Bergen, Norway, Commenced May 2021

SAFF Water testing, USA

Soil Washing, Sweden

Soil Washing, Norway

Trench Based Downhole Foam Fractionation, USA


SAFF Internal Research

E P
O C
ENVIRO

- PFAS in Raw Sewerage Water Treatment
 - Boydel Waterminer/OPEC SAFF Combination
- SAFF40 for US trials: PFAS from soil and water
 - 50% funded trials on 4 x US Defence Bases
 - US\$300k, 1 year
- SAFF40 for Swedish Trials: PFAS from Leachate
 - 50% funded trial on Sodertelje Landfill Leachate
 - US\$300k, 3 year
- High Performance SAFF Trials
 - 100% OPEC funded trials
 - 20 times better performance (Primary CF from 10 to 200x)
 - PFAS removal with ultra low PFAS contamination (single PPT)
- HP SAFF Alternative Applications
 - Removal of micro-plastics, pharmaceuticals and various other surface active compounds
 - Drinking water and trade waste discharge
- Foam deluge and appliance washdown
 - Combined with PFAScrub solvent to polish fire fighting appliances
 - SAFF allows reclamation and recycling of solvent

PFAS in Raw Sewerage: Electro-coagulation + SAFF

SAFF20 Research Unit

UPCOMING WEBINAR – APRIL 12TH 2022

SESSION 1 : AUSTRALIA 12PM AWST / 2PM AEST

SESSION 2 : EUROPE 10AM UTC / 11AM BST / 12PM CEST

SESSION 3 : NORTH AMERICA 12PM PDT / 3PM EDT

Register now at epocenviro.com

Kent Sorenson: ksorenson@allonnia.com David Burns: dburns@epocenviro.com

