



# FIELD DEMONSTRATIONS OF ENHANCED CONTACT PLASMA FOR PFAS DESTRUCTION: LESSONS LEARNED



CHASE NAU-HIX CLARKSON UNIVERSITY DMAX PLASMA, INC

# **OVERVIEW**

- PLASMA AND PLASMA DESTRUCTION
- FIELD SCALE TREATMENT RESULTS
- CONCLUSIONS AND LESSONS LEARNED

# **PLASMA**

- Plasma is an ionized gas consisting of a quasi-neutral mixture of neutral species, positive ions, negative ions, and electrons.
- Plasmas are created by applying a potential difference between two metal electrodes. One of the electrodes can be immersed in a liquid.





# GAS-LIQUID REACTORS: THE BEST PERFORMING PLASMA TREATMENT SYSTEMS





Plasmas are best suited for degrading surfactant-like compounds!

# PLASMA REACTOR SCALEUP FOR PFAS DEGRADATION



#### TREATMENT CAPABILITIES OF ELECTRICAL DISCHARGE PLASMAS



Leachate color change following a 30 min treatment

# BATCH REACTOR PERFORMANCE: REMOVAL OF PFAS FROM INVESTIGATION-DERIVED WASTE (IDW)



investigation derived waste (IDW) obtained from 9 different Air Force site investigations. Treatment volume is 4 L. No pre-treatment. Concentration of PFOA+PFOS (ng/L) IDW 4 ◀ IDW 5 DW 6 IDW 8 🔺 IDW 9 10 70 ng/L 10 10<sup>0</sup> Treatment time (min)

**Degradation profiles of combined PFOA and PFOS concentrations in** 



## **Field Demonstrations Completed**

| Location                              | Water Type                                    | Water<br>volume              | Partners                                                                                   |
|---------------------------------------|-----------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------|
| Wright<br>Patterson Air<br>Force Base | Groundwater from<br>Fire Training Area        | 325 gallons;<br>up to 2 gpm  | GSI Environmental (Steve Richardson<br>lead)<br>Funded by AFCEC                            |
| Pease Air<br>Force Base               | Ion Exchange Still<br>Bottoms                 | 35 gallons;<br>batch         | Wood (Nate Hagelin lead)<br>ect <sub>2</sub> (Steve Woodard lead)<br>Funded by DoD - ESTCP |
| Industrial Site                       | Ion Exchange Still<br>Bottoms,<br>Groundwater | Confidential                 | Confidential                                                                               |
| Tyndall Air<br>Force Base             | Pit water from Fire<br>Training Area          | 2900 gallons;<br>Up to 8 gpm | GSI Environmental (Steve Richardson<br>lead)<br>Funded by NDCEE (through Battelle)         |

# **Field Demonstrations Completed**

| Location                              | Water Type                                    | Water<br>volume              | Partners                                                                                   |
|---------------------------------------|-----------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------|
| Wright<br>Patterson Air<br>Force Base | Groundwater from<br>Fire Training Area        | 325 gallons;<br>up to 2 gpm  | GSI Environmental (Steve Richardson<br>lead)<br>Funded by AFCEC                            |
| Pease Air<br>Force Base               | Ion Exchange Still<br>Bottoms                 | 35 gallons;<br>batch         | Wood (Nate Hagelin lead)<br>ect <sub>2</sub> (Steve Woodard lead)<br>Funded by DoD - ESTCP |
| Industrial Site                       | Ion Exchange Still<br>Bottoms,<br>Groundwater | Confidential                 | Confidential                                                                               |
| Tyndall Air<br>Force Base             | Pit water from Fire<br>Training Area          | 2900 gallons;<br>Up to 8 gpm | GSI Environmental (Steve Richardson<br>lead)<br>Funded by NDCEE (through Battelle)         |

#### September 16-27, 2019 at former Fire Training Area 2, Wright-Patterson AFB

Partnered with GSI Environmental (Steve Richardson, Poonam Kulkarni)

Influent PFOA and PFOS concentrations:

|            | PFOA (ppt) | PFOS (ppt) |
|------------|------------|------------|
| FTA2-MW02B | 185        | 1100       |
| FTA2-MW02C | 416        | 3944       |

~350 gallons of PFAS-impacted groundwater were treated at various reactor operating conditions:

- flowrates: 0.3 -1.1 GPM per reactor
- number of recycle events\* up to 10 cycles

\*One cycle (18 gal of water) is defined as a single pass through the reactor from the influent tank.



#### TRAILER PERFORMANCE: WELL B AT 0.9 GPM FOR 10 CYCLES





\*BDL=Below Detection Limit (< 9 ng/L)

#### TRAILER PERFORMANCE: WELL B AT 0.9 GPM FOR 10 CYCLES



#### TRAILER PERFORMANCE: WELL B AT 0.9 GPM FOR 10 CYCLES

PFHxS PFNA PFNS PFOA PFOS

PFBA PFBS PFHpA PFHxA PFPeA PFPeS

Using the average energy consumption value measured (16 kWh/m<sup>3</sup>) and the average cost of electricity in the United States (\$0.12/kWh), the cost for decreasing combined PFOA and PFOS concentrations to the USEPA HAL in 3785 L (1000 gal) of PFAS-impacted water was approximately \$7.30.





#### SURFACTANT ADDITION INCREASES REMOVAL RATES OF SHORT-CHAIN PFAS





# **LIMITATIONS OF CTAB ADDITION**

1. CTAB inhibits the interfacial adsorption of long chain PFAS, in particular, PFOS.

CTAB can only be added after long-chain PFAS are degraded!

- 2. In highly electrically conductive solutions, ions interfere with binding of ultra-short chain PFAS to CTAB.
- 3. CTAB is a chemical (oxidized by plasma to nitrate ions).



WITHOUT PLASMA



#### WITH PLASMA

#### **Treatment of Still Bottoms – Pease Air Force Base**

# Partnered with WOOD (Nate Hagelin, Eric Thompson) and ect<sub>2</sub> (Steve Woodard, John Berry, Mike Nickelsen)



- Plasma treatment of distilled ion exchange regenerant solution (still bottoms)
- High conductivity and high concentration
- Diluted 10x

# Pease Air Force Base – Reactor configuration







#### **Pease Air Force Base – Precursor Treatment**



CTAB added at times indicated by arrows

#### Pease Air Force Base - Long-chain PFAAs treatment



#### **Pease Air Force Base - Short-Chain PFAAs treatment**



Additional treatment at Clarkson with CTAB addition as needed to maintain foam layer





# **Conclusions/Lessons Learned**

- Enhanced contact plasma technology is effective at removing long and short chain PFAS from a variety of media at field scale.
- Bench-scale treatment of water being treated before getting into the field is a must.
- Sample turn-around time is a challenge for short field demonstrations need for real-time measurements.
- Industrial sites are going to provide additional challenges in terms of concentrations and compounds encountered.
- Treating standard PFAS compounds likely not be sufficient precursors and ultra-short chains will become more important.

# **Field Demonstrations Upcoming**

- Hill Air Force Base groundwater
- Leavenworth Army Base groundwater
- Solid Waste Landfill leachates
  and membrane concentrate
- TBD membrane reject
- Sugar Grove Naval Base still bottoms
- Navy oily bilge water





#### ACKNOWLEDGMENTS

- Dr. Thomas Holsen
- Dr. Selma Mededovic Thagard
- Postdoctoral researchers and graduate students
- Clarkson's CAARES and CAMP
- ISE
- NYS Center of Excellence in Healthy Water Solutions
- Clarkson's Ignite Program
- The Shipley Center for Innovation













Office of Science









WALLACE H. COULTER SCHOOL OF ENGINEERING

# MECHANISM OF PFOA AND PFOS DEGRADATION: LIQUID-PHASE BYPRODUCTS



#### MECHANISM OF PFOA AND PFOS DEGRADATION: GAS-PHASE BYPRODUCTS

