Modeling Meaningful PFAS Cleanup Costs

Presentation to Northeast Conference on the Science of PFAS: Public Health & the Environment

5 April 2022

Lloyd S Ross

Predicting Future PFAS Response Actions and Costs

Known Knowns Adds Certainty

- Limited number of viable treatment technologies
- Common investigation and remediation methods and system processes apply

Known Unknowns Adds Uncertainty

- 1,000s of compounds (42 tested in soil and groundwater)
- Evolving regulations, criteria, and standards
- Near ubiquitous and multiple sources

Range of Potential Outcomes (reasonable story lines)

Definitions

- Cost estimates versus Probabilistic Cost Model.
- <u>Monte Carlo</u> is a computer method to heuristically solve probabilistic models.
- Types of Probabilistic Cost Models
 - Scenario or **Event Trees** what may happen.
 - If a groundwater extraction system is ultimately required, If treatment of media would be through resin or carbon, duration horizons
 - <u>Variable or Distribution Model</u> varying <u>how much</u> will happen (quantity, rate and duration).
 - Groundwater extraction system annual costs and duration it would be operated
 - How many gpm will be extracted? How many cubic yards of material to be excavated?

Cost estimating and modeling: well-defined and accepted practices

- **GAAP** (Generally Accepted Accounting Principles)
- FAS 5 (Statement of Financial Accounting Standards No. 5)
 - Accounting for contingencies
- ASTM E2137-17 Standard Guide for Estimating Monetary Costs and Liabilities for Environmental Matters
- FAS 141(R) Fair Value Accounting
 - Consistent with European Accounting standards (mark-to-market)

Hierarchy of estimating

Liability estimating

- Quoted price
- Expected value
- Most likely value
- Range of values
- Known minimum

DESIRABILITY

Mark to market (fair value)

- Quotes
- Comparables
- Reference (means, racer)
- Professional judgment

Compounding bias in straight line estimates

The probable answer probably lies somewhere between.

Properly constructed probabilistic models can acknowledge both perspectives.

Considerations for constructing model framework

- Lifecycle costs usually developed by phases related to the program but can be refined to account for other buckets:
 - Allocation among parties
 - Accounting or tax purposes (capital versus non-capital investments)
 - Insurance or regulatory applicability (defense and construction costs)
- Is cash flow for Net Present Value analysis applicable?

- Minimum number of scenarios and estimates needed to develop reasonable ranges and capture sensitive variables
 - Generally, we model with 3 primary scenarios per 'issue' with 3 branches into each subsequent phase
 - A story line or narrative is developed for each of the potential outcomes.

Frameworks Illustrated

HALEY ALDRICH

Each box is supported by a cost estimate

Distribution of Costs from Monte Carlo Simulations

- Percentiles
 - -10^{th} to 90^{th}
 - Median / 50th
- Expected value (mean)
- Different values may be appropriate for different purposes. Repurposing any single value should be done carefully.

Example – Acquisition due diligence

- A buyer negotiating the purchase of manufacturing facility struggled to quantify the meaning of environmental conditions described in a Phase I ESA completed by others
- Simple probabilistic modeling and sensitivity analysis quantified (and shows in graphics) the range of potential liabilities
- Potential *lower-probability, high-cost event* would have made deal untenable for buyer
- Buyer saved time and money during remaining due diligence period by focusing Phase II ESA only on issues related to the high-cost uncertainty issue (potential off-site groundwater migration)

Considerations for cost allocation

Example equitable allocation factors based on Section 113(f)(1) of CERCLA and the "Gore Factors" and "Torres Factors" used in a recent Superfund allocation model: Remedy Cost Drivers

- Degree to which a party's waste and/or operations are likely to have contributed to the contamination that is driving the remedy (remedy cost driver analysis).
- Degree to which the parties have differentially contributed to the remedy-driving contamination in different areas
- Degree to which parties have differentially contributed to distinguishable remedial components, e.g., dredging of soft sediments, capping of native sediments, in situ stabilization/solidification (ISS), etc.
- Degree to which different contaminants of concern (COCs) are differentially contributing to the costs of the remedy

Considerations for cost allocation (continued)

Other Allocation Considerations

- Status of the parties under Section 107 of CERCLA as owners, operators, generators, and transporters
- Whether a party's waste generating and/or disposal activities were conducted in violation of applicable law, governmental orders, enforcement directives or consent agreements, orders or decrees
- Avoided costs as a result of waste disposal, directly or indirectly
- Economic benefit to be realized as a result of the remediation
- Degree to which uncertainty affects the application of the above factors

PFAS Cost model – theoretical case

New challenges – Acme Corp.

- Acme Corp operations is suspected contributor of PFAS in aquifer
- Water purveyor files a \$750M lawsuit against Acme Corp. and others for wellhead protection costs
- Agency issues an order to investigate and remediate PFAS compounds associated with the former chrome plating operations
- A cost model was constructed to provide a range of costs, for Acme Corp. to evaluate options and inform management strategy and planning

• Monitoring well

Three Scenarios – Acme Corp.

This site is fictitious and information herein are used to demonstrate the Monte Carlo method

Input variables – claim (well head protection cost)

Two variables

- Total claim value: approximately \$650M (low), \$750M (med), and \$850M (high) split into phases
- Claim allocation: uniformly between 2.5% and 7.5%

Input variables – PFAS Remedy

Results of Monte Carlo simulations – Acme Corp.

Percentile	Site Specific Total	Well Head Treatment	Total
0%	\$2,155,890	\$16,259,197	\$18,733,192
10%	\$2,492,875	\$24,621,496	\$28,550,000
20%	\$2,726,240	\$28,786,148	\$32,946,475
30%	\$2,864,125	\$32,974,417	\$37,200,654
40%	\$3,087,425	\$37,146,767	\$41,310,743
50%	\$3,273,325	\$41,208,321	\$45,399,733
60%	\$3,575,344	\$45,407,389	\$49,557,444
70%	\$3,969,144	\$49,568,387	\$53,855,790
80%	\$4,484,494	\$54,287,155	\$58,447,109
90%	\$8,829,219	\$59,873,781	\$64,239,225
100%	\$9,752,256	\$74,997,992	\$84,385,962

		Well Head	
Statistic	Site Specific Total	Treatment	Total
Mean	\$4,185,183	\$41,803,336	\$45,988,519
Median	\$3,273,325	\$41,208,322	\$45,400,689
Standard Deviation	\$2,219,888	\$13,096,604	\$13,292,770
Skewness	1.52	0.2041	0.2035
Kurtosis	3.72	2.15	2.2
Coeff. of Variation	0.5304	0.3133	0.289
Minimum	\$2,155,890	\$16,259,197	\$18,733,192
Maximum	\$9,752,256	\$74,997,992	\$84,385,962
Mean Std. Error	\$9,928	\$58,570	\$59,447

Results of Monte Carlo Simulations of Scenarios

PFAS remedy cost Range

Third Party claim range

Questions and discussions

Lloyd S. Ross Haley & Aldrich, Inc. LRoss@HaleyAldrich.com 1.216.706.1327

