

Coupling Regenerable Ion Exchange Resin with Electrochemical Oxidation for Onsite Separation & Destruction of PFAS in Groundwater

Authors: Rebecca Mora & Shangtao Liang, PhD Presenter: Rosa Gwinn, PhD PG

Contacts:

rebecca.mora@aecom.com rosa.gwinn@aecom.com

Project Objectives

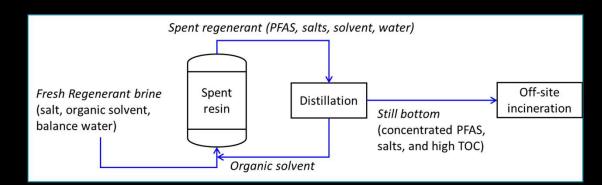
- Demonstrate Regenerable ion exchange resin (IXR) effluent meets drinking water health advisory levels for PFOS and PFOA
- Confirm the destruction of PFAS in the still bottom via electrochemical oxidation (EO) treatment
- Optimize the operation conditions of IX-R and EO processes
- Demonstrate the regenerable IX-R+EO treatment train through operation of a pilot-scale treatment system
- Examine the effort needed to complete the closed loop IXR+EO treatment process

Project Team

- AFCEC BAA 108 Project Team
 - PI: Shangtao Liang, PhD, AECOM
 - Co-PI: Jack Huang, PhD, University of Georgia
 - PM: Rebecca Mora, AECOM
 - Technical Advisor: Rachael Casson, AECOM
 - IX-R Technology Supplier
 - ECT2

Analytical Laboratory

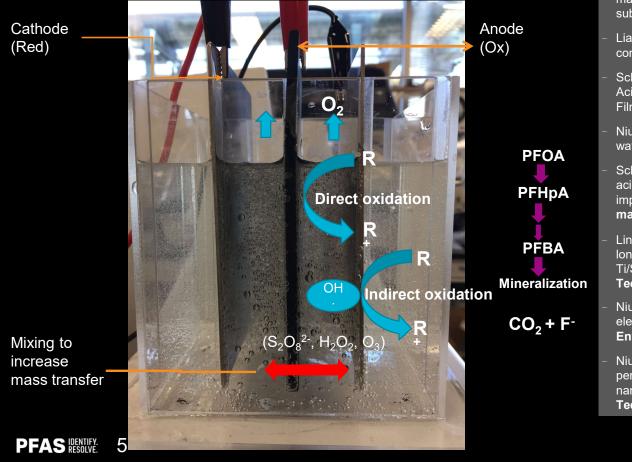
- Pace Analytical Gulf Coast
- Eurofins Lancaster (TOP analysis)


PFAS IDENTIFY. 3

ΑΞϹΟΜ

Regenerable Ion Exchange Resin for PFAS Treatment

- Uses an on-site process to regenerate spent IXR
 - Significantly reduces spent media for off-site incineration
 - Most applicable for treatment of higher concentrations
- Regeneration solution: brine, organic solvent
 - Organic solvent is reclaimed through distillation
 - Still bottom is the only waste stream requiring disposal


This project used electrochemical treatment to destroy PFAS in the still bottom

Regeneration of ion exchange resin

PFAS IDENTIFY. 4

Electrochemical Oxidation of PFAS – Proof of Concept

DC Power Supply

PUBLICATIONS

-	Lin, Hui, et al. "Development of macroporous Magnéli phase 1407 ceramic materials: As an efficient anode for mineralization of poly-and perfluoroalkyl substances." Chemical Engineering Journal 354 (2018): 1058-1067.
-	Liang, Shangtao, et al. "Electrochemical oxidation of PFOA and PFOS in concentrated waste streams." Remediation Journal 28.2 (2018): 127-134.
-	Schaefer, Charles E., et al. "Electrochemical Transformations of Perfluoroalkyl Acid (PFAA) Precursors and PFAAs in Groundwater Impacted with Aqueous Film Forming Foams." Environmental science & technology (2018).
-	Niu, Junfeng, et al. "Electrochemical oxidation of perfluorinated compounds in water" Chemosphere 146 (2016) 526-538
-	Schaefer, Charles E., et al. "Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs)." Journal of hazardous materials 295 (2015): 170-175.
-	Lin, Hui, et al. "Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9–C10) by Ti/SnO2–Sb–Ce, Ti/SnO2–Sb/Ce–PbO2, and Ti/BDD electrodes." Environmental Science & Technology 47.22 (203): 13039-13046.
-	Niu, Junfeng, et al. "Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid." Environmental Science & Technology 47 24 (2013): 14341-14349

Niu, Junfeng, et al. "Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode." **Environmental Science & Technology** 46.18 (2012): 10191-10198.

Field Demonstration at Wright-Patterson AFB

Field Pilot at WPAFB

Tested technology at 2 sites that have groundwater contaminated with PFAS from use of aqueous film-forming foam (AFFF)

- Sites: Hangar, Fire Training Area (FTA)
- Elevated PFAS concentrations at both sites
- Generate performance data for different water quality

AECOM

PFAS IDENTIFY. 7

Field Pilot – Operation

- IX-R groundwater treatment flow rate: 2 to 5 gpm
- Designed to treat 5,000 15,000 ppt total PFAS
- Treatment goal: PFOS + PFOA < 70 ppt (Hangar) and ND for PFOS (FTA)
- Treated ~500,000 gallons of groundwater over 5 months at two sites

PFAS IDENTIFY. 8

Field Pilot – Separation & Concentration

Equipment

Still Bottom Waste

PFAS IDENTIFY. 9

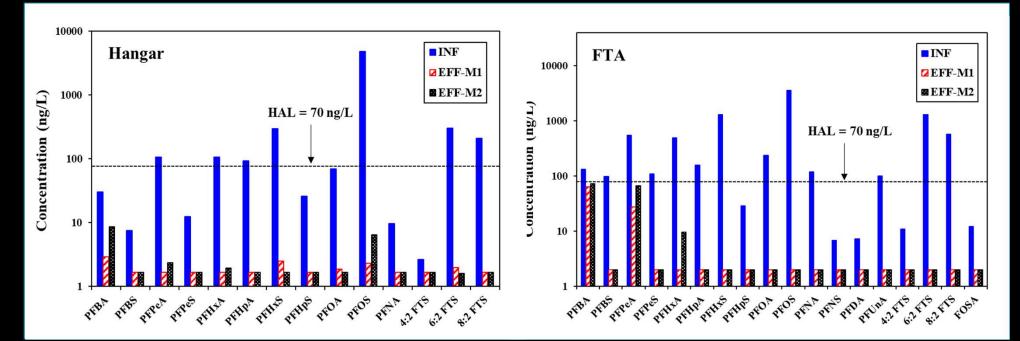
Field Pilot – Destruction

Still Bottom Waste

On-site pilot treatment

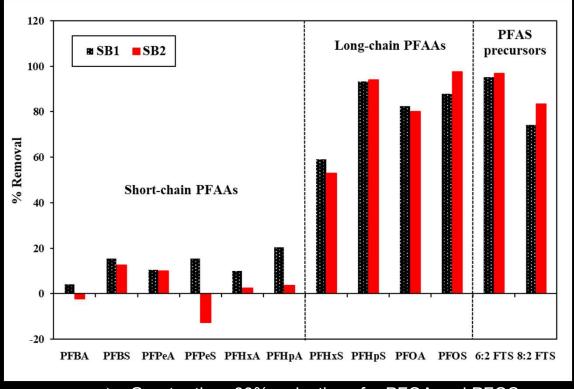
UGA Bench Treatment

Bench EO Reactor


Pilot EO Reactor

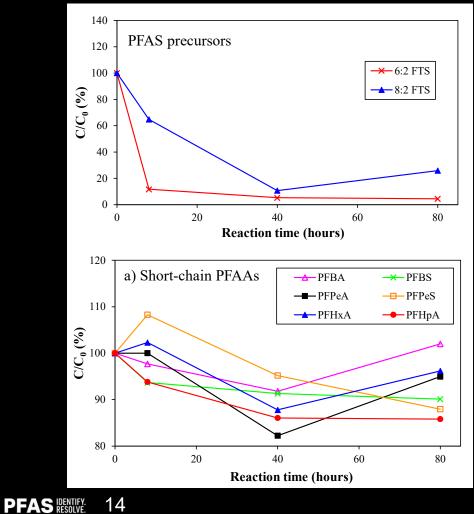
PFAS IDENTIFY. 10

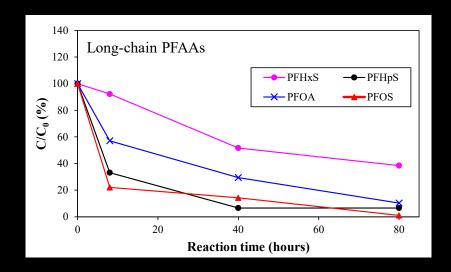
Results and Discussion


Field Pilot – IXR Results

- Only PFAS detected in feed water are shown
- PFOA and PFOS are below 70 ng/L in IXR effluent
- > 15 out of 18 PFAS are not detected in IXR effluent
- Resins were regenerated before PFAS saturation

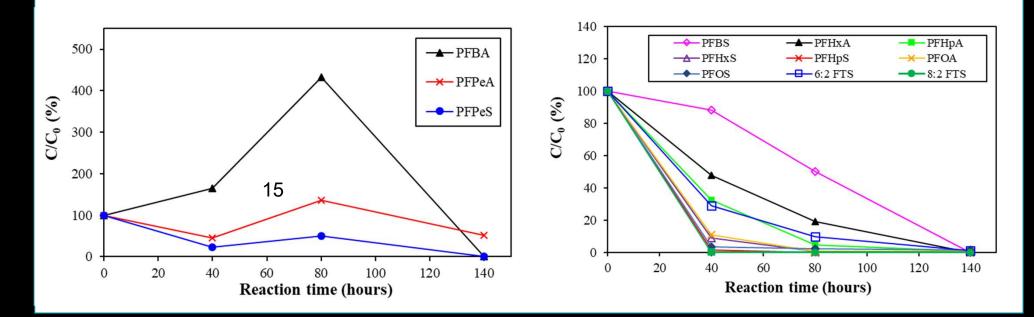

PFAS IDENTIFY. 12


Field EO Pilot Results – PFAS Degradation



Degradation rate $(C_t-C_0)/C_0$			
	SB1	SB2	
PFBA	-4%	2%	
PFBS	-15%	-13%	
PFPeA	-10%	-10%	
PFPeS	-16%	13%	
PFHxA	-10%	-2%	
PFHpA	-20%	-4%	
PFHxS	-59%	-53%	
PFHpS	-93%	-94%	
PFOA	-82%	-80%	
PFOS	-88%	-98%	
6:2 FTS	-95%	-97%	
8:2 FTS	-74%	-83%	

- Greater than 80% reductions for PFOA and PFOS
- Greater than 70% reductions for precursors
- > Degradation of short-chains was slower due to decarboxylation of long-chains and precursors
- Good replicability between batches



- Rapid degradation was observed for PFAS precursors and long-chain PFAAs within the first 8 hours of treatment
- Short-chain PFAAs were generated as intermediate degradation products

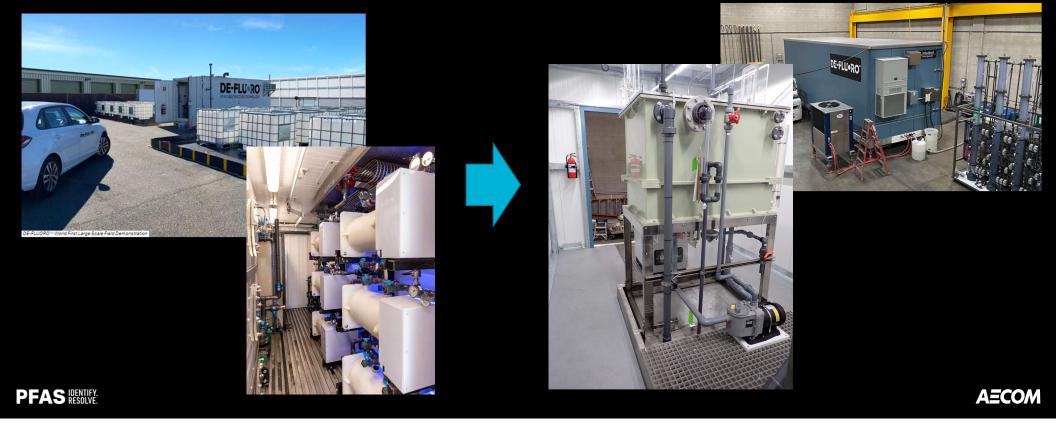
Supplemental Bench – Extended Treatment Time

- > 89% PFOA reduction and 96% PFOS reduction achieved within 40 hours
- > 99% PFOA reduction and 98% PFOS reduction achieved at 80 hours
- > >98% reduction of total PFAS after 140 hours of treatment

Project Outcomes

- Demonstrate Regenerable IXR effluent meets drinking water advisory levels for PFOS and PFOA
- Confirm the destruction of PFAS in the still bottom via EO treatment
- Optimize the operation conditions of IX-R and EO processes
- Demonstrate the regenerable IX-R+EO treatment train through operation of a pilot-scale treatment system
- Examine the amount of effort (energy, cost, additional pre-treatment or post-treatment) needed to complete the closed loop IXR+EO treatment process

Liang et al., 2022. *Field demonstration of coupling ion-exchange resin with electrochemical oxidation for enhanced treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater.* Chemical Engineering Journal Advances V9, <u>100216</u>



DE-FLUORO – Technology Development Progress

ANZ Field Demonstration Complete: Large-scale batch reactor

US Air Force Field Demonstration

Underway: Large-scale flow through reactor

Questions?

Rosa Gwinn, PhD PG AECOM Global Technical PFAS Lead

PFAS IDENTIFY. RESOLVE.