### Dealing with PFAS Mixtures: Approaches to Predicting Joint Effects of PFAS Mixtures on Molecular Initiating Events



**Greylin Nielsen**, MPH nielseng@bu.edu April 6, 2022



**Research Team**:

Jennifer Schlezinger, PhD Thomas Webster, PhD Wendy Heiger-Bernays, PhD

Boston University School of Public Health

# Acknowledgements

#### Advisor

• Dr. Jennifer Schlezinger

#### **BU Collaborators**

- Dr. Tom Webster
- Dr. Wendy Heiger-Bernays
- Emily Hammel, MPH
- Nathan Burritt, Research Assistant

#### **Funding Sources**

 $^\circ~$  NIEHS R01 ES027813 and T32 ES014562



# Per- and polyfluoroalkyl substance (PFAS) exposure is a mixtures problem



Humans are <u>exposed to mixtures</u> of PFAS through drinking water, food, air, household dust, soil, and consumer, personal care products, and more

Multiple PFAS are found in humans:

PFOS, PFOA, PFHxS, and PFNA are consistently measured in more than 90% of the U.S. population

# Different PFAS have similar health effects



PFAS guidelines, advisories, and regulations are based on health risk

## Drinking Water Standards and Guidance Values are Based on Reference Doses



# Adverse Outcome Pathway



Diagram from "Pathways to a Better Future" video series, © The Human Toxicology Project Consortium

Nuclear receptor activation is an important molecular initiating event for PFAS

Nuclear receptors = proteins in cells that recognize and respond to molecules in the body (like hormones), therapeutic drugs, and environmental chemicals

# Nuclear receptor activation is an important molecular initiating event for PFAS



# Nuclear receptor ligands can be full agonists, partial agonists, and antagonists

## PFAS Engage Multiple Nuclear Receptor Pathways

Human Liver Cell Model

**PFOA and PFOS upregulated target gene expression of:** 

- Peroxisome Proliferator-Activated Receptor α (PPARα)
- Pregnane X Receptor (PXR)
- Constitutive androstane receptor (CAR)
- Liver X receptor
- Farnesoid X receptor
- Receptor affinity studies have shown that PFOA binds to human ERα





### PFAS Engage Multiple Nuclear Receptor Pathways

# PPARα accounts 80-90% of PFAS regulated genes in WT mice<sup>1</sup> but only ~55-60% in mice expressing human PPARα

1. PMIDs: 18281256, 28558994

### Multiple PFAS Activate PPARα



Behr et al., 2020 PMID: 31676336



 Can we model the effects of multiple PFAS on a single molecular initiating event (PPARα activity)?



# Can we model the effects of multiple PFAS on PPARα activity?



V. Rider - Jane Ellen Simm

### 1. Define null hypothesis mixtures models



2. Generate data on individual PFAS and PFAS mixtures



3. Compare activity predicted by models to empirical PFAS mixtures activity

# Models of Additivity

#### Concentration/Dose Addition

Applied to chemicals with "similar" mechanisms of action

#### Relative Potency Factor (RPF)

<u>Sums</u>: doses as dilutions of a reference compound <u>Assumes</u>: equal efficacy  $y = f_1(x_1 + \gamma_2 x_2)$ 



# Models of Additivity

#### Concentration/Dose Addition

Applied to chemicals with "similar" mechanisms of action

#### Relative Potency Factor (RPF)

Generalized Concentration Addition (GCA)

<u>Sums</u>: doses as dilutions of a reference compound <u>Assumes</u>: equal efficacy  $y = f_1(x_1 + \gamma_2 x_2)$  Sums: doses <u>Assumes</u>: equal or unequal efficacy  $y = \frac{\alpha_1 \frac{x_1}{K_1} + \alpha_2 \frac{x_2}{K_2}}{1 + \frac{x_1}{K_1} + \frac{x_2}{K_2}}$ 

### **Response Addition**

Applied to chemicals with "dissimilar" mechanisms of action

## Effect Summation (ES)

<u>Sums</u>: Effect levels <u>Assumes</u>: Linear dose response curves

$$y = f_1(x_1) + f_2(x_2)$$







# Data Analysis

- I. Fit individual dose response curves normalized to PC (GW7647)
- II. Extract **potency** and **efficacy** for modeling
- III. Create and test binary and complex mixtures with known concentrations of each component
- IV. Employ individual dose-response data to predict mixture activity with different models of additivity
- V. Statistically compare predicted activity to experimental activity

| Ligand      | Ligand Type     | Potency<br>(EC <sub>50</sub> ) M | <b>Efficacy</b><br>(% Max. Activity) |
|-------------|-----------------|----------------------------------|--------------------------------------|
| GW7647      | Full Agonist    | 1.8x10 <sup>-11</sup>            | 99                                   |
| Pemafibrate | Full Agonist    | 2.2x10 <sup>-11</sup>            | 104                                  |
| MEHP        | Partial Agonist | 5.2x10 <sup>-6</sup>             | 60.1                                 |
| GW6471      | Antagonist      | *7.3x10 <sup>-9</sup>            | 0                                    |

Only Generalized Concentration Addition (GCA) predicts mixture effects for all different ligand types



\*equilibrium dissociation constant



Image from: https://pfas-1.itrcweb.org/fact\_sheets\_page/PFAS\_Fact\_Sheet\_Naming\_Conventions\_April2020.pdf (Thanks to Jamie DeWitt)

# PFCAs more efficaciously activate PPAR $\alpha$



# GCA predicts the effects of binary <u>PFAS mixtures</u>: GenX and NBP2



#### GCA predicts PPARα activation by binary <u>PFAS mixtures</u>: GenX and NBP2





### GCA predicts PPARα activation by binary PFAS mixtures: PFOA and PFOS





RPF RMSE = 19.1, ES RMSE = 19.8

### RPF and GCA Predict PPARα Activation by Mixtures of PFCAs GCA Predicts PPARα Activation by Mixtures of PFSAs





- $\Delta$  Empirical PFCA Data
- Empirical PFSA Data



\* Reference compound for RPF modeling

### GCA Predicts PPARα Activation by Human-Relevant Mixtures



# Conclusions

- I. <u>Human relevant biological systems</u> provide insight into the interaction between environmental chemicals and key molecular initiating events
- II. PFAS are human PPAR $\alpha$  agonists that vary in potency and efficacy
- III. Modeling approaches that incorporate both potency and efficacy provide the most accurate predictions of PPARα activity by diverse ligands
- IV. Generalized Concentration Addition accurately predicts the effects of PFAS mixtures on human PPARα activity *in vitro*



1. We can model the effects of multiple PFAS on single molecular initiating event.

2. Can we use these modeling approaches to support regulatory efforts to group PFAS?

### More about this project:

## Thanks again to the team:



Follow up with any questions Greylin Nielsen nielseng@bu.edu



### **Dr.Wendy Heiger-Bernays**



### **Dr. Jennifer Schlezinger**



### **Dr.Tom Webster**