Update on Brown University's 3D Vapor Intrusion Model

Kelly G. Pennell, Ozgur Bozkurt, Eric M. Suuberg - Brown University

Vapor Intrusion Workshop September 2008

Brown's Superfund Basic Research Program (SBRP): Reuse in Rhode Island

As part of the Superfund Basic Research Program (SBRP) Brown developed a 3-D mathematical representation of vapor intrusion

VI is one of eight other projects being researched within the SBRP.

<image>

www.brown.edu/sbrp

Vapor Intrusion: Not part of original SBRP

- Need for vapor intrusion research was communicated by T. Gray (RIDEM) to Brown's SBRP.
- NIEHS and EPA/ORD highlighted vapor intrusion research needs during conference in 2006
- NIEHS awarded Brown provided supplemental funding
- Research began late-Fall 2006

Early 2007 - Terry Gray (RIDEM) meets the vapor intrusion graduate student...

Overall Research Objective

Provide a quantitative tool to guide field investigations and mitigation efforts such that VI risks are better characterized and managed.

www.vaprotect.com/images/2006/10/17/graphic.gif

Modeling Approach

A finite element model (Comsol) is used to evaluate vapor intrusion using conventional fate and transport processes

The model solves the problem in 3 steps:

- 1. Gas flow through soil (Darcy's Flux)
- 2. Species transport
- Indoor air concentration is calculated as a function of building exchange rate, soil gas flow into the building and concentration at the crack

Perimeter foundation crack present. ΔP = -5 Pa

Sample Model Domain

Gas Flow Through Soil

P High

$$q = \frac{-\kappa\rho}{\mu} \frac{dP}{dx}$$

Darcy's Law for one dimensional incompressible flow

Darcy's Law for 2D or 3D incompressible flow

P Low

Species Transport

$$\vec{J}_T = \vec{q} C - D_{eff,i}^{gas} \nabla C$$

$$D_{eff,i}^{gas} = D_i^{air} \frac{\eta_g^{10/3}}{{\eta_T}^2} + \frac{D_i^w}{K_H} \frac{\eta_w^{10/3}}{{\eta_T}^2}$$

Non-aqueous liquids (NAPL) and residual contamination in groundwater and/or soil can act as the source for vapor contamination

Determining Indoor Air Concentration

Soil Gas Concentrations (Homogenous Geology) Various Site Features

Pennell et al. 2008 Journal of the AWMA

k (m ²)	Scenario ^a	$Q (m^3/sec)$	Conc. at the	Subslab	Indoor Air	Mass	Indoor Air	Indoor Air
			Crack ^b	Conc. ^c	Conc.	Flowrate	Conc./Subslab	Conc./Source
			(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/s)	Conc. ($\alpha_{subslab}$)	(gas) Conc. (α_{gw})
10-10	1	7.91E-04	7.45E+01	2.17E+02	1.78E+00	5.89E-02	8.20E-03	6.72E-03
	2	6.26E-04	1.16E+02	2.26E+02	2.19E+00	7.24E-02	9.69E-03	8.29E-03
	3	7.91E-04	7.44E+01	2.17E+02	1.78E+00	5.88E-02	8.18E-03	6.71E-03
	4	1.31E-03	4.88E+01	2.24E+02	1.90E+00	6.39E-02	8.46E-03	7.17E-03
	5	7.52E-04	6.40E+01	2.07E+02	1.45E+00	4.82E-02	7.03E-03	5.50E-03
10 ⁻¹¹	1	7.91E-05	1.10E+02	1.90E+02	2.68E-01	8.70E-03	1.41E-03	1.01E-03
	2	6.26E-05	1.81E+02	2.15E+02	3.49E-01	1.13E-02	1.62E-03	1.32E-03
	3	7.91E-05	1.10E+02	1.90E+02	2.68E-01	8.70E-03	1.41E-03	1.01E-03
	4	1.31E-04	1.00E+02	1.98E+02	4.03E-01	1.31E-02	2.04E-03	1.52E-03
	5	7.52E-05	6.23E+01	1.75E+02	1.88E-02	8.02E-03	1.07E-04	7.09E-05
10-12	1	7.91E-06	8.78E+01	1.81E+02	3.85E-02	1.25E-03	2.13E-04	1.46E-04
	2	6.26E-06	1.37E+02	2.08E+02	5.58E-02	1.80E-03	2.68E-04	2.11E-04
	3	7.91E-06	8.80E+01	1.81E+02	3.86E-02	1.25E-03	2.13E-04	1.46E-04
	4	1.31E-05	9.68E+01	1.81E+02	5.29E-02	1.71E-03	2.91E-04	2.00E-04
	5	7.52E-06	8.82E+01	1.81E+02	3.80E-02	1.23E-03	2.10E-04	1.44E-04
10-13	1	7.91E-07	7.33E+01	1.77E+02	2.29E-02	7.40E-04	1.30E-04	8.65E-05
	2	6.26E-07	1.14E+02	2.02E+02	3.53E-02	1.14E-03	1.75E-04	1.33E-04
	3	7.91E-07	7.34E+01	1.77E+02	2.29E-02	7.42E-04	1.30E-04	8.66E-05
	4	1.31E-06	8.10E+01	1.71E+02	2.60E-02	8.41E-04	1.52E-04	9.82E-05
	5	7.52E-07	7.40E+01	1.78E+02	2.31E-02	7.47E-04	1.30E-04	8.72E-05
10 ⁻¹⁴	1	7.91E-08	6.17E+01	1.74E+02	1.86E-02	6.01E-04	1.07E-04	7.02E-05
	2	6.26E-08	9.49E+01	1.97E+02	2.86E-02	9.24E-04	1.45E-04	1.08E-04
	3	7.91E-08	6.18E+01	1.74E+02	1.86E-02	6.02E-04	1.07E-04	7.03E-05
	4	1.33E-07	7.34E+01	1.61E+02	2.22E-02	7.17E-04	1.38E-04	8.37E-05
	5	7.52E-08	6.23E+01	1.75E+02	1.87E-02	6.07E-04	1.07E-04	7.09E-05
Diffusion K=10 ⁻¹⁴	1	0.00E+00	6.16E+01	1.74E+02	1.85E-02	5.97E-04	1.06E-04	6.98E-05
	2	0.00E+00	9.47E+01	1.97E+02	2.84E-02	9.19E-04	1.44E-04	1.07E-04
	3	0.00E+00	6.17E+01	1.74E+02	1.85E-02	5.98E-04	1.06E-04	6.99E-05
	4	0.00E+00	7.32E+01	1.61E+02	2.19E-02	7.10E-04	1.36E-04	8.30E-05
	5	0.00E+00	6.21E+01	1.75E+02	1.86E-02	6.03E-04	1.07E-04	7.04E-05

^a1-Single building, 2-Single building surrounded by 5 m parking lot, 3-Single building with detached garage, 4 -Single building with 10-inches of porous subbase, 5 Š Two buildings separated by 4m (data shown for Building

A. Due to symmetry, data for Building B should be identical).

^b The concentration at the crack was determined by integrating over the entire surface of the CER. The CER ^c The subslab concentration location is the center of the building footprint at foundation:soil interface.

Sensitivity Analysis (Permeability vs. Diffusivity)

$$D_{eff,i}^{gas} = D_i^{air} \frac{\eta_g^{10/3}}{\eta_T^2} + \frac{D_i^w}{K_H} \frac{\eta_w^{10/3}}{\eta_T^2}$$

$$q = \frac{-\kappa\rho dP}{\mu} \frac{dP}{dx}$$

More Advanced Model Scenarios (Various Geologic Features)

No Pressurization

A. HomogenousB. & C. Layered

<u>High Permeability/Diffusivity</u> $k_{High} = 10^{-10} \text{ m}^2, D_{eff,i}^{gas} \text{High} = 1.05\text{E-6 m}^2/\text{s}$ <u>Medium Permeability/Diffusivity</u> $k_{Medium} = 10^{-12} \text{ m}^2, D_{eff,i}^{gas} \text{Medium} = 8.68\text{E-7 m}^2/\text{s}$ <u>Low Permeability/Diffusivity</u> $k_{Low} = 10^{-14} \text{ m}^2, D_{eff,i}^{gas} \text{Low} = 4.37\text{E-7 m}^2/\text{s}$

Layered Soil Results

High (top) highest indoor air Low (top) highest soil gas concentrations

Other Geologic Features

Soil surrounding clay/obstructions, K=10 ⁻¹¹ m ²	Indoor Air (mg/m³)
Continuous Clay	0.0029
Discontinuous Clay	0.16
Obstructions (Plain)	0.27

Conclusions

- Vapor intrusion potentials are difficult to predict if soil gas concentrations are used by themselves.
- Modeling can be used as tool to interpret field results.
- Field verification/calibration/validation are being conducted as a next step...

Current Efforts

Modeling Approach

Mesh generation is complex. Proper mesh geometry is critical to accuracy of model results.

OOL

Iterative Process: Evaluate instabilities in concentration and re-mesh.

Mn:0

Next Steps

- Continue to exercise model and evaluate which site features should be included
- Compare model results with field data
- Consider a separate site, for which a PRP is providing additional data
- Evaluate how model should be improved based on validation efforts.

Overall Research Plan and Longer Term Goals

Model development based on current theoretical understanding

Connect/Revise model using existing field data (model verification and calibration)

Future Research Goal Bench Scale Experimentation and Model Re-design

> LONG TERM GOAL... Field study

Contact Info:

- Have a site that might be a good candidate for model verification?
- Have questions about our research?

CONTACT: Kelly Pennell Ph: 401-863-1073 kelly_pennell@brown.edu or Eric Suuberg Ph: 401-863-1420 eric_suuberg@brown.edu