### In Situ Chemical Oxidation (ISCO): System Design

Presented by:

Brant Smith, P.E., Ph.D.

#### NEWMOA In Situ Chemical Oxidation Workshop

March 15, 2011 Westford, Massachusetts March 16, 2011 Danielson, Connecticut



STRATEGIC. ENVIRONMENTAL. SOLUTIONS.

# **Big Picture of ISCO Design**

#### Not all "ISCO" is created equal

- Variation in each ISCO technology
  - CHP, Pesulfate, Permanganate, and Ozone
- Variation in design and implementation
  - Thoroughly designed ISCO
  - Less well designed ISCO
  - Some guy with a bucket of something from Walgreens
- Variation in results and costs



STRATEGIC. ENVIRONMENTAL. SOLUTIONS.

## Justification of ISCO Design

- Well Designed ISCO versus "Cookie Cutter" approach
- ISCO may be more design intensive than other technologies
  - Interaction of site specific geochemistry with ISCO technology process chemistry
  - Complex chemistry
  - Hazards associated with chemicals and application of chemicals



# **Critical Design Elements**

- Technology Selection
  - Each has different properties
- Injection Strategy
  - Establish contact between a sufficient mass of oxidant with the contamination in the subsurface
- Monitoring
  - Process monitoring: Confirm reagent distribution
  - Performance monitoring: Quantify both the results of the ISCO application and the progress toward remedial goals





### **TECHNOLOGY SELECTION**



# **Brief Technology Overview**

- Primary oxidants include:
  - Hydrogen Peroxide  $(H_2O_2 \text{ becomes OH}, O_2^-, HO_2^-)$
  - Permanganate (MnO<sub>4</sub>-)
  - Iron Activated Persulfate (S<sub>2</sub>O<sub>8</sub><sup>2-</sup> becomes SO<sub>4</sub><sup>-•</sup>, OH•, O<sub>2</sub><sup>-•</sup>)
  - Ozone
- Each technology behaves differently depending upon site soils/site conditions



## **Key Characteristics: CHP**

- Activation:
- Reactivity:
- End products:
- Stability:
- Cost:
- "Pros":
- "Cons":

Transition metal-can be stabilized Most organic COC Oxygen and water Minutes to days Low Higher moles per pound Can autodecompose Gas and heat evolution Handling DHS listed >35%



# Key Characteristics: Permanganate

- Activation: No-direct oxidation
- Reactivity: Limited COCs (ethenes, etc)
- End products: Manganese dioxide
- Stability: Weeks to years
- Cost: Mid to high
- "Pros":
- "Cons":

Mid to high Kinetically fast reactions Potassium limited solubility Potassium listed with DHS Sodium highly reactive at 40% Can be limited by SOD

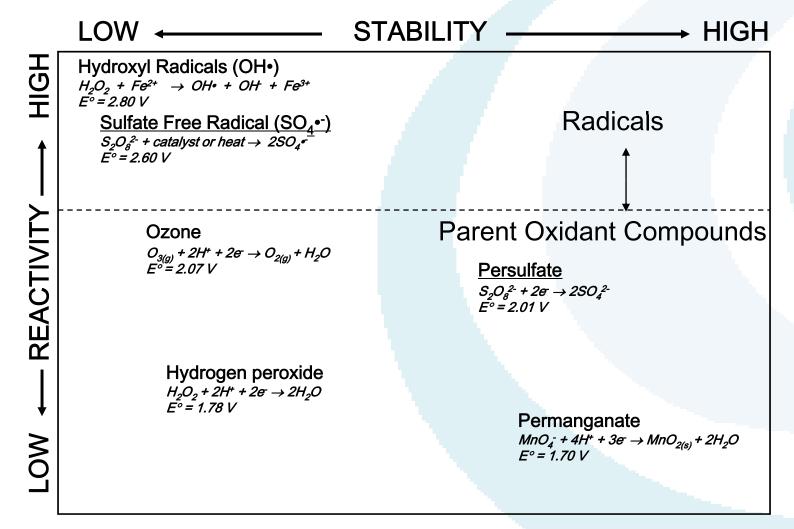
# Key Characteristics: Persulfate

- Activation: Iron (reduced TM) or alkaline
- Reactivity: Iron-many; alkaline most COCs
- End products: Sulfate and acid
- Stability: Days to months
- Cost: Mid-range
- "Pros":
- "Cons":

High solubility

Can be limited by SOD




## **Key Characteristics:** Ozone

- Gas or aqueous • Phase:
- Reactivity: Acidic-many; alkaline most-COCs
- End products: Oxygen and water
- Stability: Low
- Cost: Site dependent—mid to high
- "Pros": Treatment of unsaturated zone
- "Cons":

Low solubility in water



## **Oxidant Selection**





## **Bench Tests**

- Previously discussed
- "ISCO in a beaker"
- Assess potential failure mechanisms
- Provide:
  - Engineering parameters
  - Confirm effectiveness
- Useful in selecting technologies



### **INJECTION STRATEGY**




## **Purpose of Injection Strategy**

- Take what happened in the beaker and make it happen in the field
- The KEY to field scale up?
  - <u>To establish contact between a</u> <u>sufficient mass of oxidant with the</u> <u>contamination for a sufficient duration</u> <u>of time</u>



## **Establishing Contact**

- Critical Factors include:
  - Site characterization
  - Reagent transport
  - Contaminant mass, phase and distribution
  - Injection strategies
  - Additional design issues





## **Site Characterization**

- Presented on earlier-an application can be no better than the site characterization
- ISCO is like artillery:
  - Need to know where to shoot
- Understand the site
- Poor characterization has several failure mechanisms:
  - Recontamination
- Rebound

## **Reagent Transport**

ISCO has been applied successfully in a variety of geologies

#### • Design issues:

- Non-target oxidant demand (identify on bench)
- Geochemical interferences interference with activation of oxidant (identify on bench)
- Complex / heterogeneous subsurface (proper conceptual site model, ROI, oxidant selection, etc)
- Limited hydraulic conductivities (injection flow rates, ROI)
- Rapid groundwater flow rate (oxidant & activator selection)
- Oxidant density effects (oxidant selection, injector placement, ROI)



### **Contaminant Mass**

Sufficient mass of oxidant for the mass of contaminant in a given volume of soil to meet project goals.

Oxidant Mass  $\geq$ 

Contaminant demand + SOD/NOD + Auto-decomposition

- Typical ISCO reactions:
  - TCE with persulfate

 $3 S_2 O_8^{-2} + C_2 HCI_3 + 4 H_2 O \rightarrow 2 CO_2 + 6 HSO_4^{-} + 3 HCI$ 

- Benzene with peroxide

 $15 \text{ H}_2\text{O}_2 + \text{C}_6\text{H}_6 \rightarrow 6 \text{ CO}_2 + 18 \text{ H}_2\text{O}$ 



# **Contaminant Phase and** Distribution

#### **Contaminant Phase**

- Aqueous
- Soil
- **Residual on Soil**
- NAPL

#### **Contaminant Distribution**

- Heterogeneous lenses •
- Homogeneous zone
- Different phases in different areas



**Post-application** 



## **Injection Strategies**

- Strategy is designed to match the site, contaminant, budget and remedial goal
- Common Strategies
  - Direct injection (conventional and flow down)
  - Recirculation
  - Pull-Push
  - Push Pull
- Strategy may change during treatment or between phases



# Contaminant Phase and Injection Strategies

| Contaminant | Average<br>Concentration<br>(µg/L) | Organic carbon<br>fraction in soil<br>f <sub>oc</sub> (%) | Calculated<br>Concentration<br>on Soil (µg/Kg) | Mass in<br>GW (%) | Mass on<br>Soil (%) |
|-------------|------------------------------------|-----------------------------------------------------------|------------------------------------------------|-------------------|---------------------|
| VC          | 1,000                              | 0.1                                                       | 2                                              | 99%               | 1%                  |
| DCE         | 1,000                              | 0.1                                                       | 49                                             | 78%               | 22%                 |
| TCE         | 1,000                              | 0.1                                                       | 126                                            | 57%               | 43%                 |
| VC          | 1,000                              | 0.5                                                       | 12                                             | 93%               | 7%                  |
| DCE         | 1,000                              | 0.5                                                       | 245                                            | 41%               | 59%                 |
| TCE         | 1,000                              | 0.5                                                       | 630                                            | 21%               | 79%                 |
| VC          | 1,000                              | 1                                                         | 25                                             | 87%               | 13%                 |
| DCE         | 1,000                              | 1                                                         | 490                                            | 26%               | 74%                 |
| TCE         | 1,000                              | 1                                                         | 1,260                                          | 12%               | 88%                 |





# **Additional Design Issues**

- Injection Volume vs. Pore Volume
  - Lesser percent pore volume injected
    - Will primarily treat preferential pathways or limited radius from injection point
    - More dependent upon diffusion and groundwater transport
  - Higher percent pore volume injected
    - Greater distribution via advective flow
    - Less dependent upon diffusion and groundwater transport
- Injection Concentration / # Applications
  - Higher concentrations / applications help ensure contact with sufficient oxidant



### **MONITORING PROGRAM**



# **Monitoring Program**

- Monitoring program typically underappreciated but critical aspect to implementation of ISCO
- Key Factors:
  - Monitoring Objectives
  - Soil vs. Groundwater Sampling
  - Soil Sampling Strategies



# **Monitoring Objectives**

- Implementation Process
  - Examples: reagent distribution, injection volumes, pressures, etc.
- ISCO event
  - Example: contaminant mass
- Progress toward site remedial goals
  - Example: groundwater concentrations



# Soil vs. Groundwater Sampling

- Monitor contaminant phase that contributes to the intended remedial goal:
  - Mass reduction on soils or NAPL: Monitor soils
  - High concentrations in GW: Monitor soils and GW
  - Low concentrations in GW: Monitor GW
- Investigation wells vs ISCO monitoring wells
  - Investigation well screen intervals may or may not correlate with target interval
  - ISCO monitoring wells screen interval should be entirely within target interval



# **Soil Sampling Strategies**

#### **Grab Samples**

- What it is:
  - Discrete sample selected from cores based on visual or screening tool
- What it does:
  - Typically meets regulatory requirements in many states
  - Can provide negative or positive bias on performance based on sample selection approach

#### **Composite Samples**

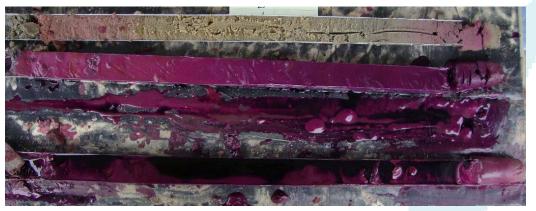
#### What it is:

 Mixing soils from core or visually similar section to obtain a composite sample for analysis

#### • What it does:

- Provides a more comparable analysis for mass determination and treatment effectiveness
- May not meet regulatory requirements in many states




## Summary

- ISCO is a complex remedial technology
- Key Design Elements
  - Oxidant Selection
  - Injection Strategy
    Monitoring Program
- Different level of design effort likely results in different probability of success





## **Questions?**



Brant Smith XDD, LLC smith@xdd-llc.com (603) 778-1100





