

Real World Integration of Real Time Data Sets

REAL-TIME DATA COLLECTION & INTERPRETATION FOR BETTER DECISION-MAKING

November 19, 2008 The Publick House Sturbridge, MA November 20, 2008 NHDES Offices Concord, NH

Matthew Ruf Director of Direct-Push/Direct-Sensing Services

www.s2c2inc.com

908 253 3200 ext. 16

Introduction

 \gg <u>S2C2</u> – Who we are.

- Company focuses on Streamlined Site Characterization
- S2C2 has been performing these services for over 10 years
- Over 20-Year History of Site Characterization using real-time data

Real Time Data

Direct-Sensing Tools

- Electrical Conductivity Probe
- Membrane Interface Probe (MIP)
- Fuel Fluorescent Detector (FFD)

Mobile Laboratory

- GC/MS Methods:
 - -Volatiles
 - -Semi-Volatiles
 - -PCBs, Pesticides, TPH
- Metals by XRF

> Other Real Time Technologies

- Geophysical surveys
- PID
- Global Positioning System

Data Visualization

Collaborative Data

Choosing the right tool for real-time data

<u>Overburden</u>

- Membrane Interface Probe (MIP)
 - BTEX : Dissolved phase
 - CVOCs:

•

Source Area & Dissolved

Fuel Fluorescent Detector (FFD)

- Hydrocarbons: Residual and Free Product
- Not Dissolved phase

• Electrical Conductivity (EC)

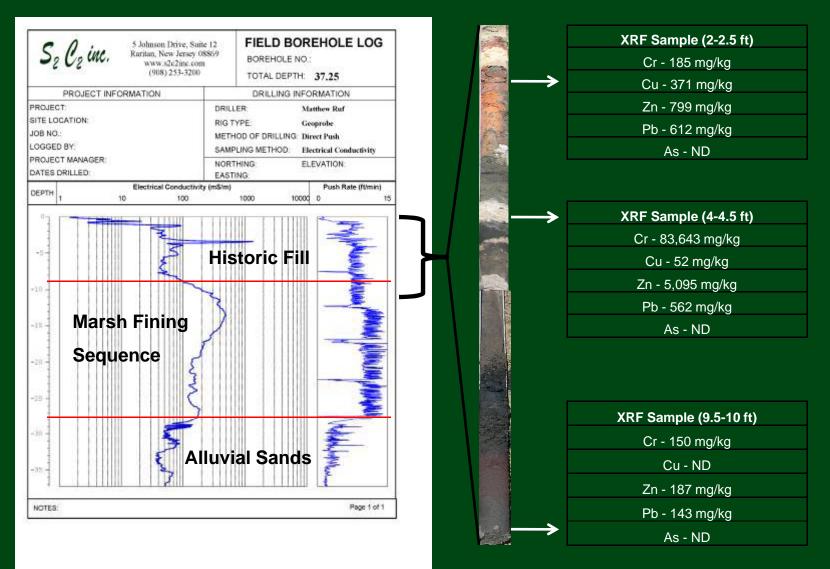
- Soil Lithology
- Historic Fill
- Preferential Pathways/Targeting sample
 Intervals
- Mobile Laboratory
 - SVOC PAHs, Pesticides, PCBs
 - VOCs Below MIP detection limits and Speciation
 - Metals XRF

<u>Bedrock</u>

- Mobile Laboratory
 - Rock Coring w/ packer testing
- Flute Liners
- Downhole Geophysical

Characterization of Historic Fill Using Electrical Conductivity (EC) and a Hand Held XRF

Background:


- Multiple acre former industrial site
- Historic Fill extended to a depth of 15' bgs. with high levels of metals
- Water table 5' bgs.
- Remedy "Hotspot " removal

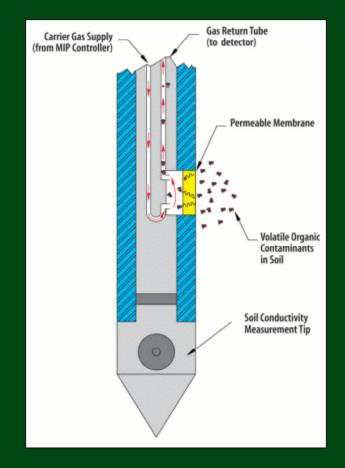
Problem:

• Characterization of Fill material difficult using traditional techniques

 $S_2 C_2$ inc.

Solution

$S_2 C_2$ inc.

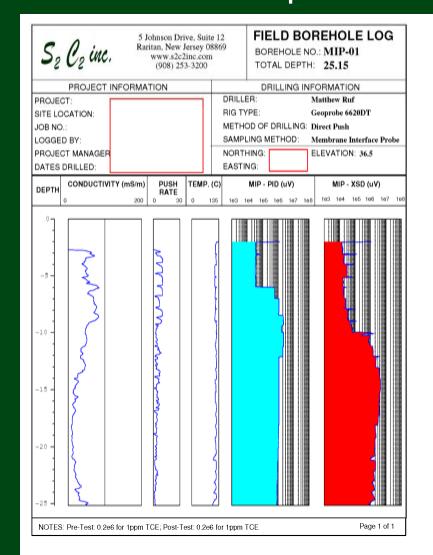

Why was real time data important for this site?

- Accurately determining the extent of Historic Fill
- Target sampling interval
- Generate a detailed model of Metals impacts in relationship with lithology
- Decrease size of impacted "hotspots" -which decreased remediation <u>costs</u>

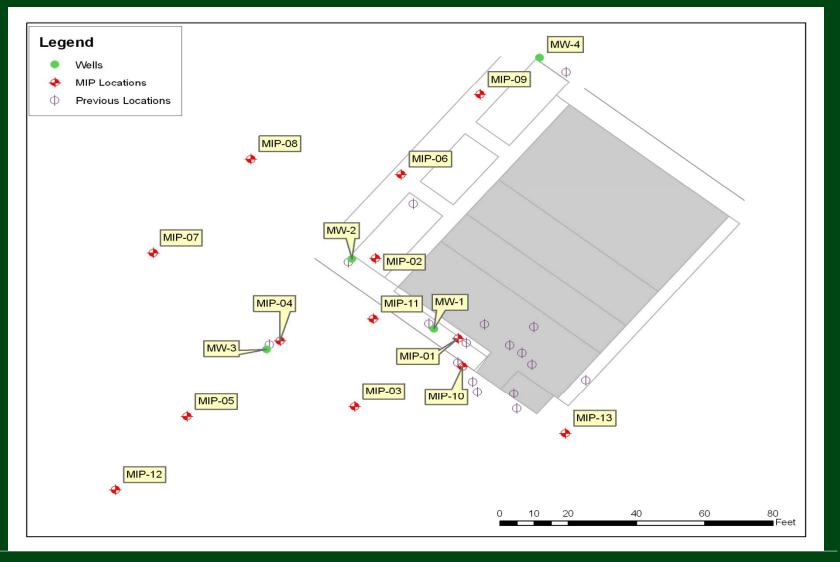
Membrane Interface Probe

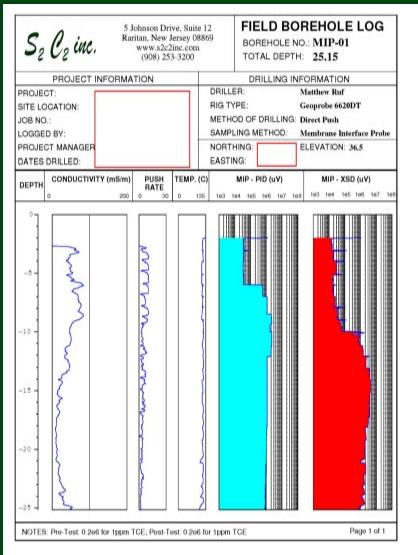
- Screening tool with semiquantitative capabilities.
- Simultaneous chemical and lithologic data.
- Diffusion occurs by concentration gradient from formation to carrier gas.
- Detectors are configured for expected contaminants.
 - PID (BTEX compounds)
 - ECD/ELCD/XSD (Chlorinated Specific)
 - FID (Straight chain hydrocarbons)
- Must follow <u>ASTM D7352-07</u> Standard Practice for MIP!!
- Geoprobe MIP Service Specialist

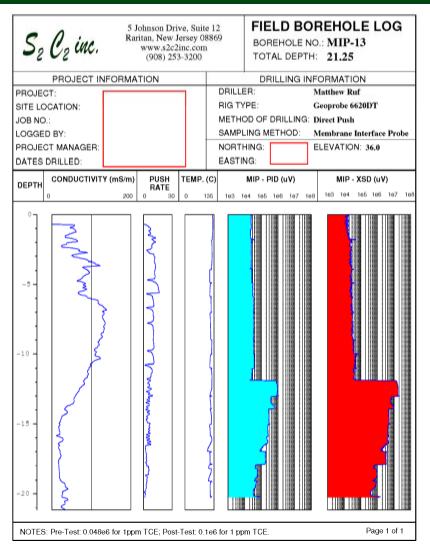
Characterization of a PCE source area using a MIP


Background:

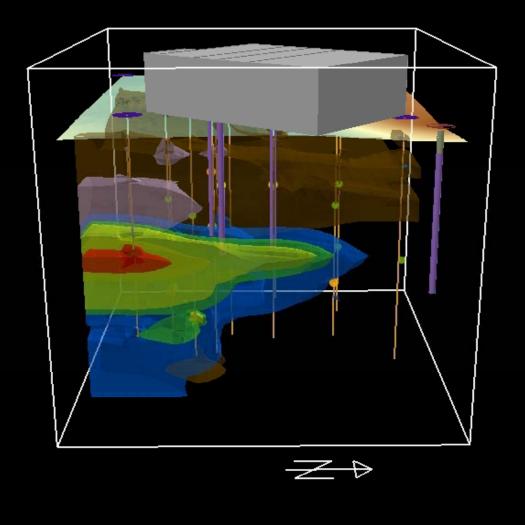
- Active "green" dry cleaning facility in a small strip mall.
- Water table approximately 7'bgs.
- Well set from 4 to 14' bgs.
- Phase I revealed a broken underground pipe that was thought to be the source.
- Prior to MIP Investigation 2-3 days of traditional sampling and analysis was performed, 4 well were installed and sample
- Estimated cost to date for the investigation 25-30k


$S_z C_z$ inc. Case Study Map of previous work done at the site


$S_z C_z$ inc. Initial MIP Location at Suspected Source Area



$S_z C_z$ inc. Case Study 2 Map of completed MIP locations at the site


Sz Cz inc. Initial CSM & Final CSM Source Areas

Current PCE Model

 $S_2 C_2$ inc.

Project Results

> Initially focused on delineation of dissolved phase

More delineation is now required

> Well depth and location are now wrong

Total cost before MIP investigation > \$25,000

Cost of MIP investigation with analysis < \$15,000</p>

 $S_2 C_2$ inc.

When to use the MIP

Define Lithology & Total VOCs Simultaneously

- Initial investigation tool at new sites
- Delineation down to 150 ppb total VOCs
- Source Area delineation (10 vs. 100 ppm)
- Prior to remediation to target impacted zones
- Prior to placement of wells (location & depth)

Fuel Fluorescent Detector (FFD)

- Dual Downhole Fuel Fluorescent Detector (FFD) detects the fluorescence produced by aromatic hydrocarbons when excited by an ultraviolet (UV) light source.
- The FFD probe is coupled with Cone Penetrometer Technology (CPT) which gives a simultaneous read-out of lithology.
- Continuous, real-time data generated during the push allows for rapid delineation of Light Non-Aqueous Phase Liquids (LNAPLs) in the subsurface.

 $S_2 C_2$ inc.

FFD Output

SITE LOCATION: RIG TYPE: Geoprobe JOB NO.: METHOD OF DRILLING: Direct Pash LOGGED BY SAMPLING METHOD: Fuel Fluorescent Detector PROJECT MANAGER: NORTHING: ELEVATION: DATES DRILLED: EASTING: LIFFD (V) DEPTH Tip Stress (psi) Sleeve Stress (psi) Proce	S2 C	2 inc.	e, Suite I rsey 088 1c.com 3200	869 BOREHOLE NO : RE-14									
SITE LOCATION: JOB NO.: LOGGED BY PROJECT MANAGER: DATES DRILLED: DEPTH TO Stress (ps) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PROJECT INFORMATION						DRILLING INFORMATION						
METHOD OF DRILLING: Direct Push SAMPLING METHOD: Fuel Fluorescent Detector NORTHING: ELEVATION: EASTING: DEPTH TO Stress (psi) Steeve Stress (psi) 0 0 0 10 15 25 0 0 0 10 10 15 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PROJECT												
SAMPLING METHOD: Fuel Pluorescent Detector NORTHING: ELEVATION: EASTING: DATES DRILLED: DEPTH Tip Stress (psi) Sileeve Stress (psi) Pressure 0 0 0 10 15 20	SITE LOCAT	ION:				RIG T	PE:		Geopre	abe			
PROJECT MANAGER: DATES DRILLED: DEPTH TO Stress (psi) D 0 23 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	JOB NO.:									Push			
DATES DRILLED: DEPTH To Stress (psi) Sileeve Stress (psi) Prote Pressure 10 0 05 0 05 10 15 25 0 0 0 0 10 15 25 0 0 0 0 10 15 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OGGED BY	1			-			IÓD:			Detec	tor	
Tip Stress (psi) Sileeve Stress (psi) Pore Pressure a HFFD (V) LFFD (V) 0 0 0 0 10 15 25									ELEVA	TION:			
		2011-12				EASTI	NG:					_	
		Stress (psi)	Sleeve Stress (psi)			HFFD (V)		LFFD (V)					
	33444	D	a	25				0.5	0	0.5 1.0	15	2.0	
I had to be the test of the test of the second seco		N ST						-					

When to Use FFD

- Define Lithology & Delineate Free or Residual Product
 - Targeted investigation tool for hydrocarbon impacts
 - Free product delineation
 - Prior to remediation to target impacted zones
 - Placement of wells

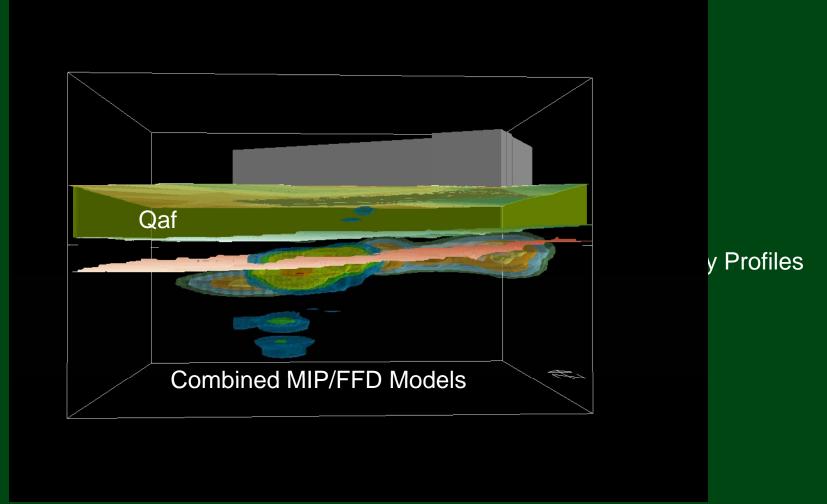
Project Summary – Brownfields Site

Initial Characterization

- Minor CVOC impacts and free-phase diesel in a number of wells
- Wells on the site were installed to bisect water table, not set in context to geologic units.
- Public Entity purchased property \$500,000 put in escrow

> Problem:

• Project manager wasn't convinced that the initial characterization was correct


Solution

Dynamic Work Strategy

- 12 electrical conductivity pushes
- 36 Fuel Fluorescent Detector (FFD) pushes
- 46 Membrane Interface Probe (MIP) pushes
- 10 Soil and groundwater Category I laboratory samples
- > Data incorporated into a project database and modeled in GIS.
- Final 3D-model was used to evaluate volumes of LNAPL and CVOC impacted soil at the site for Remediation Cost Estimates.

Project Summary – Brownfields Site

Results

Lithology Rapidly Characterized using EC

- Determined 3 distinct geologic units
- Well installed without regard to these units

MIP determined that Chlorinated impacts were minor and were associated with unknown subsurface structure.

> FFD revealed diesel impacts underestimated

Amount set aside in escrow insufficient for remediating the site

$S_2 C_2$ inc.

Tips for successful collection of real-time date

Education

- Training Seminars
- Geoprobe's Website
- Triad Website
- Vendor's Website
- Include your subcontractors into the project from the beginning
 - Direct-Sensing operators are not drillers
- Strong Systematic Planning
 - Setup good lines of communication and establish project-specific goals upfront
- Pick the proper tool for the job

Questions?

Matthew Ruf Director of Direct-Push/Direct-Sensing Services

www.s2c2inc.com

908 253 3200 ext. 16