

Green Remediation

Estimating the Environmental Footprint at a Corrective Action Clean-up

Pilot Study at Romic East Palo Alto

Karen Scheuermann, US EPA Region 9 scheuermann.karen@epa.gov

16 April 2009

Green Remediation

In Theory:

Consider all environmental effects of remedy implementation and incorporate options to maximize the net environmental benefit of cleanup actions.

In Practice:

Case studies with greener remedies. Development of tools, guides, and standards. Pilot studies to estimate footprints.

Overview

How we conducted our Pilot Study to estimate environmental footprints

Applying the results to remedy decisionmaking

Importance of incorporating Life-Cycle Assessment principles

Developing a methodology for use by regulators and site owners

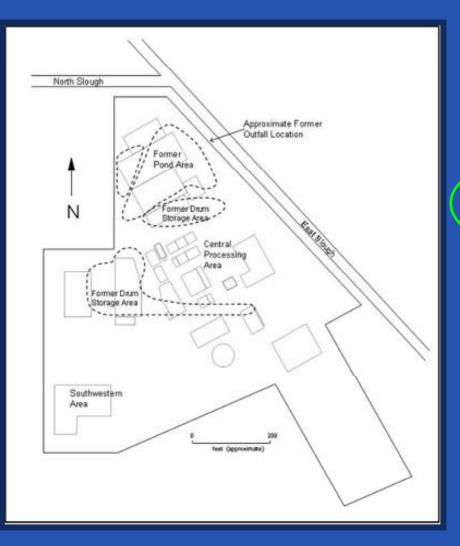
Pilot Site: Romic East Palo Alto

- 14-acre hazardous waste management facility
- Soil and ground water contaminated with VOCs (such as TCE and PCE)
- Area of contamination to a depth of 80 feet

Purpose of the Pilot Study

Compare the environmental footprints of three alternative remedies at Romic

- Is it possible to determine the environmental footprint of the alternative remedies?


- Did we select the "greenest" remedy?

- How important is off-site manufacture for the environmental footprint?

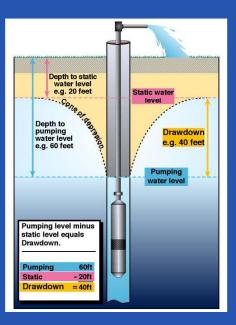
Help to develop a methodology to be used at other clean-up sites

Remedy Alternatives at Romic

Alternative 2 (Hybrid) Extraction wells and bioinjection wells 30 years to complete Alternative 3 (Bioremediation) Bioinjection wells only 40 years to complete Alternative 4 (Pump and Treat) Extraction wells only 40 years to complete

Alternative 3 has already been chosen for Romic, so this analysis did not affect the remedy decision.

Remedy Alternatives at Romic



Bioremediation:

uses injections of cheese whey and molasses to the ground water

Pump and Treat:

includes treatment of ground water in an air stripper followed by carbon filters

Boundaries of the Pilot Study

Functional Unit:

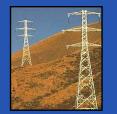
Ground water remediation.

Temporal Boundary:

Construction and active life of each alternative remedy.

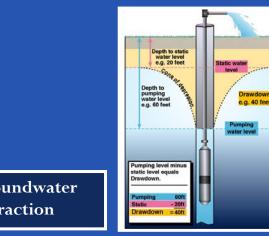
System Boundary:

On-Site Activities (Level 1) Transport To and From Site (Level 2) <u>Manufacture Off-Site (</u>Level 3)


At Romic We Evaluated...

- Resources and Energy Used
 - Water
 - Construction Materials
 - Electricity
 - Fossil Fuel
- Wastes Generated
 - Spent Carbon
 - Wastewater
- Air Emissions

 $-NO_X, SO_X, PM, CO_2$



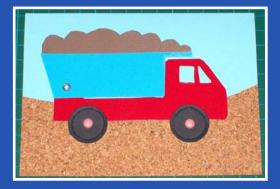
Level 1: On-Site Activities

Well Construction

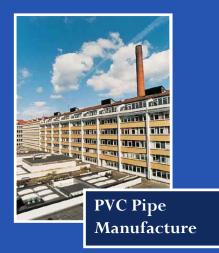
Groundwater Extraction

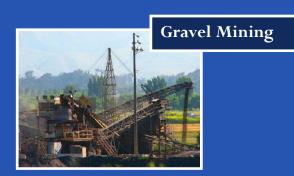
BioInjections

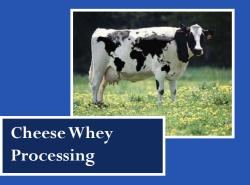
Groundwater Treatment

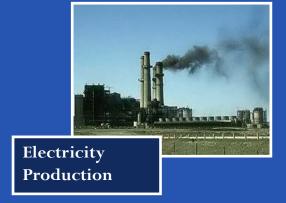

Level 2: Transport To and From Site

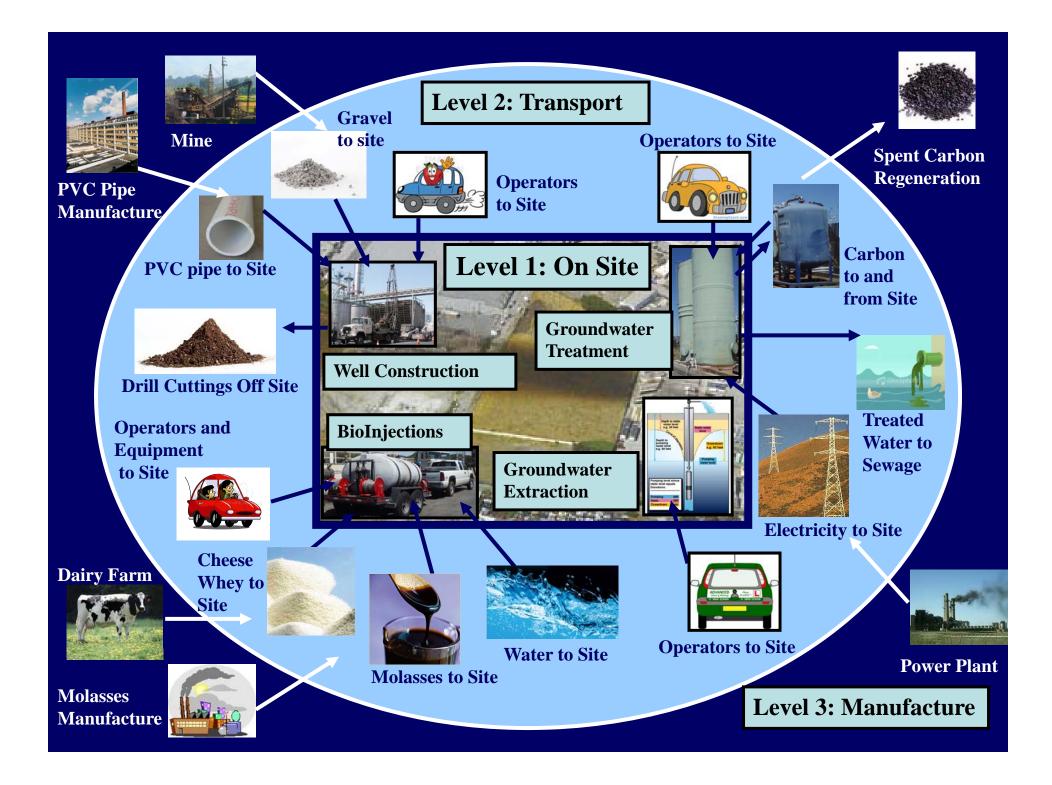
Operators to Site

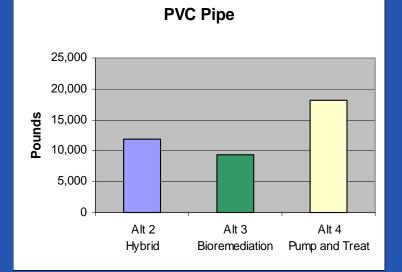



Materials to Site



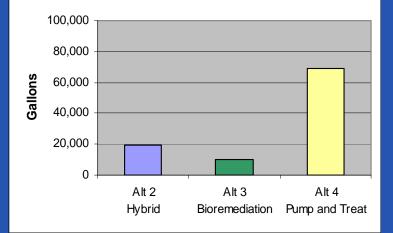

Wastes off Site

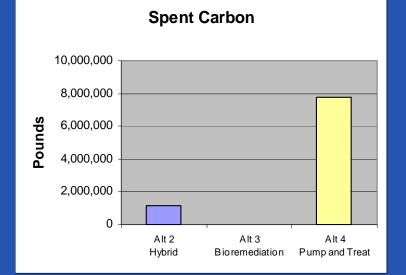

Level 3: Off-Site Manufacture


Sources of Information

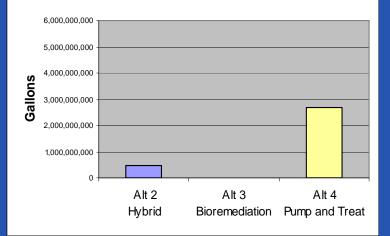
- 1. EPA Project Managers
- 2. Official Documentation
- 3. Romic Staff and Consultants
- 4. Analyst Assumptions
- 5. Web Searches
- 6. Back-of the Envelope Estimates

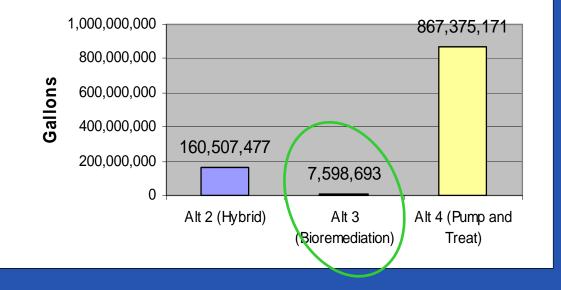
Pilot study is still in progress and results at this stage are preliminary.


Results – Materials and Fuel

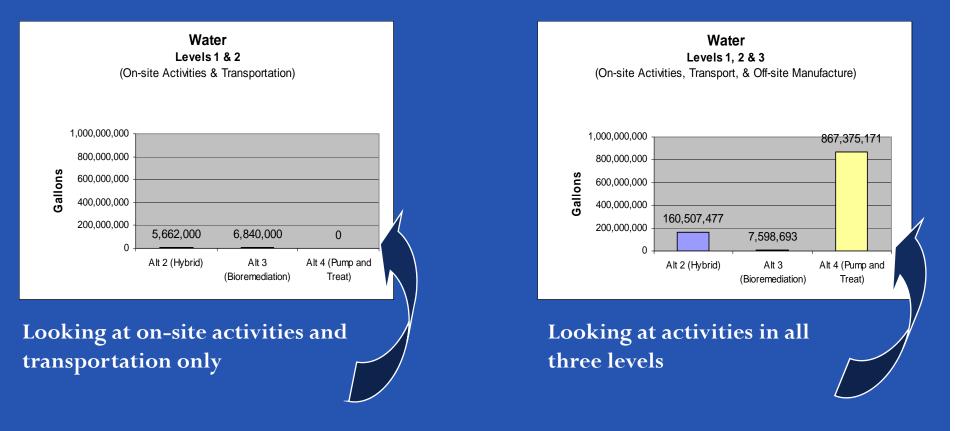


Diesel Fuel


Results – Wastes Generated


Wastewater

Results – Water


Water Levels 1, 2 & 3 (On-site Activities, Transport, & Off-site Manufacture)

These values are for the life-time of each alternative remedy.

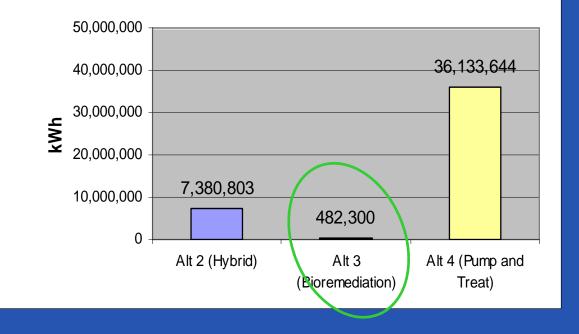
Results – Water

Including Level 3 activities in the analysis substantially increases our estimate of the water footprint.

These values are for the life-time of each alternative remedy.

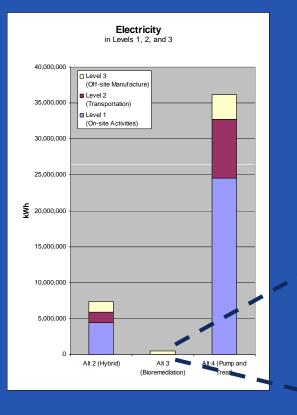
Results – Water

Issues related to water:

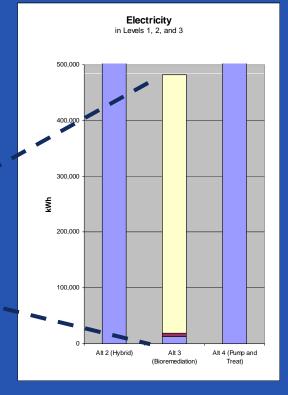

- Water withdrawn vs water consumed.
- Water withdrawn in "water scarce" areas vs water withdrawn in "water abundant" areas.
- Include non-potable water in the total water used?

Maybe all water is not equal... how should we take this into consideration?

Results – Electricity



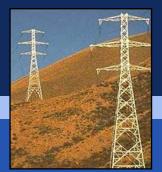
Electricity Levels 1, 2 & 3 (On-site Activities, Transport, & Off-site Manufacture)



These values are for the life-time of each alternative remedy.

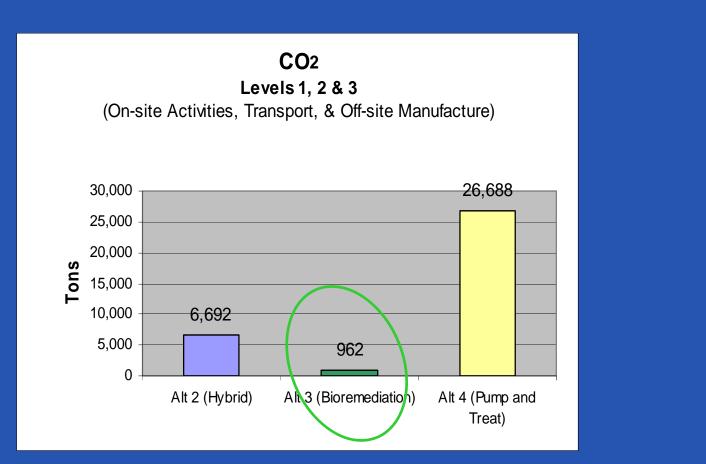
Results – Electricity

These values are for the life-time of each alternative remedy.

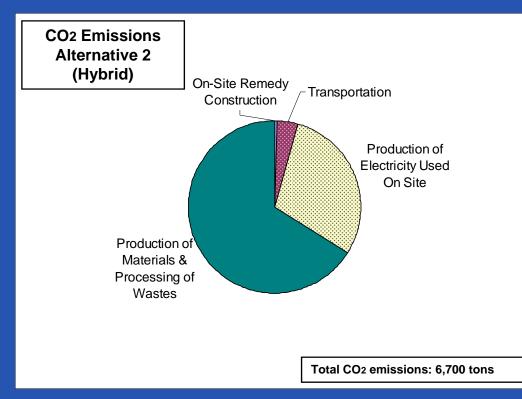


We are used to taking into account on-site electricity in evaluating environmental footprints.

However, electricity used for transport and manufacture are also important.



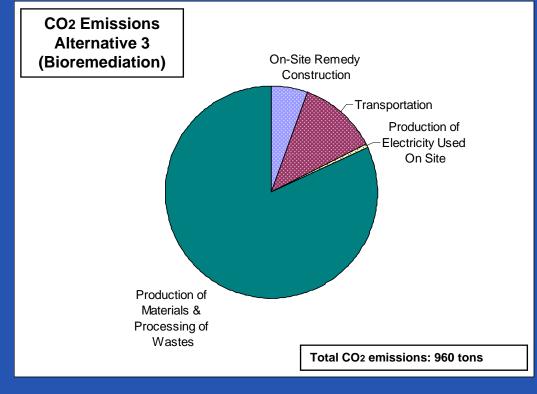
Results – Electricity



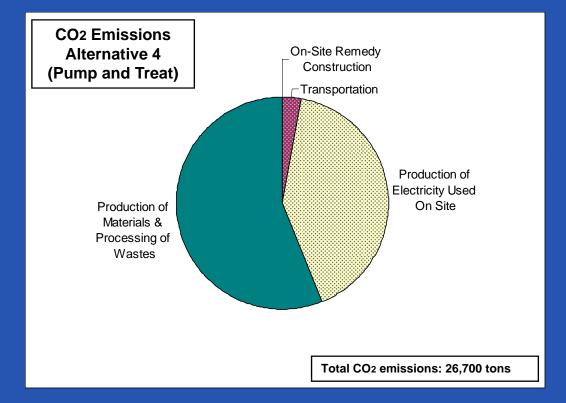
Issues related to electricity:

- Electricity use also contributes to CO₂ emissions be careful to avoid "double counting".
- We still may want to report electricity use because of infrastructure impacts.

These values are for the life-time of each alternative remedy.



These values are for the life-time of the alternative remedy.


Off-site activities, even those not related to production of electricity used on-site, are a big part of the CO2 footprint.

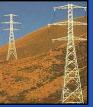
25

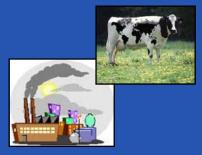
These values are for the life-time of the alternative remedy.

Off-site activities, even those not related to production of electricity used on-site, are a big part of the CO2 footprint.

Off-site activities, even those not related to production of electricity used on-site, are a big part of the CO2 footprint.

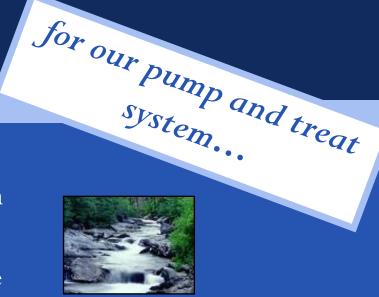
27

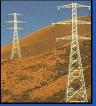

- Some CO₂ emission factors may include resource extraction and others may not, resulting in inconsistency in the analysis.
- Should we take into account likely lower emissions of CO₂ per unit material produced in the future?


Observations

- Most of the fresh water use occurred in on-site activities.
- Most of the electricity use occurred in off-site activities.

- Electricity used on site accounted for only 1% of the total CO₂ footprint.
- Other off-site manufacture accounted for about 80% of the total CO₂ footprint.
 - Especially important for the CO₂ footprint were:
 - -- bioremediation materials (whey, molasses)
 - -- production of fossil fuels
 - -- manufacture of well construction materials




Observations

- All the fresh water use occurred in off-site manufacture.
- About a third of the electricity use occurred in off-site activities.
- Electricity used on site accounted for about 40% of the total CO₂ footprint.
- Other off-site manufacture accounted for about 55% of the total CO₂ footprint.

Especially important for the CO₂ footprint were:

- -- reactivation of granulated carbon
- -- treatment of wastewater

Applying results to our decision-making

We need to balance the various aspects of each remedy.

Applying results to our decision-making

-							
		Alternative	2	Alternative 3		Alternative 4	
		Hybrid		Bioremediation	Р	Pump and Treat	
Materials	s Used		7				
Water (ga	allons)	200,000,00))	8,000,000		900,000,000	
Electricity	/ (kWh)	7,000,00	0	500,000		40,000,000	
Waste G	eneration						
Spent Ca	rbon (lbs)	1,000,0	0	0		8,000,000	
Wastewa	ter (gallons)	500,000,0	0	0		3,000,000,000	
Air Emis	sions						
CO ₂ (ton:	s)	7,00))	1,000		30,000	
Other							
Road Dis	tance (miles)	300,00	00	200,000		600,000	
Remedia	tion Time (years)	3	80	10		40	

Comparison of impacts among alternatives:

 Balance local effects with global effects.
 Balance effects of disparate items:

 natural resource depletion
 waste generation
 environmental contamination
 years to complete remedy

relatively high impact

relatively low impact

impacts similar

relatively medium impact

Applying results to our decision-making

Metrics for environmental impacts are not the only factor in a remedy decision, but would be one of several balancing factors.

In all cases the remedy must first meet threshold criteria, such as protection of human health and the environment.

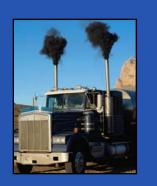
Using results to improve remedies

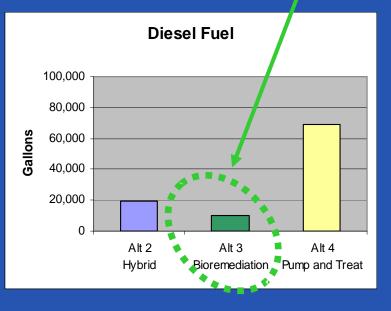
	Alternative 2	Alternative 3	
	Hybrid	Bioremediat	, Treat
Materials Used			
Water (gallons)	200,000,000	8,000,000	900,000,000
Electricity (kWh)	7,000,000	ວບບ,000	40,000,000
Waste Generation			
Spent Carbon (lbs)	1,000,000	0	8,000,000
Wastewater (gallons)	500,000,000	0	3,000,000,000
Air Emissions			
CO ₂ (tons)	7,000	1,000	30,000
Other			
Road Distance (miles)	300,000	200,000	600,000
Remediation Time (years)	30	10	40

Look at opportunities to reduce fresh water use:

use reclaimed water for bioinjections of cheese whey and molasses

Comparison of impacts among alternatives:


- relatively high impact relatively medium impact
- relatively low impact impacts similar


Reducing Impacts – Diesel Fuel

During remedy construction Romic has agreed to:

- * Use diesel particulate filters
- * Reduce idling time
- * Use ultra low sulfur diesel or another clean fuel

70% of diesel use is for onsite activities

Life-Cycle Assessment principles helped us greatly in developing our conceptual approach to the Pilot Study

It was important to include activities outside the fence line of the facility

Off-site manufacture may account for a large portion of water use, electricity requirements, and CO_2 emissions resulting from clean-up remedies

Benefits of using Life-Cycle Assessment principles to evaluate clean-up alternatives

- Quantify on- and off-site environmental impacts
- Recognize local and global impacts
- Compare relative impacts of remedial technologies
- Focus efforts in reducing impacts prior to construction of a remedy

Difficulties encountered in applying Life-Cycle Assessment principles to a clean-up remedy

- Establishing the boundaries of the clean-up remedy
- Quantifying materials to be used hypothetically (before a remedy is constructed and operating)
- Finding information about environmental footprints for manufacturing of materials used in the remedies

Improving Level 3 (Manufacturing) Estimates for the Romic Pilot Study

We performed complete (but back-of-the envelope) Level 3 calculations for:

> Water use Electricity use CO₂ emissions

We would like to add Level 3 calculations for:

> Wastes generated Fossil fuels consumed Air toxics emitted

We are working with EPA life-cycle analysis experts (in EPA's Research Office in Cincinnati) to improve and add to our Level 3 calculations.

- We plan to run calculations for other remedial activities at Romic:
 - soil excavation
 - groundwater monitoring
 - capping contaminated areas
- We would like to identify aspects of the remedies at Romic that make minimal contribution to the overall footprints – to streamline for analyses at other sites

Developing a Methodology

Conduct four more Pilot Studies this year

Outline a methodology for use by regulators and site owners

Methodology may be used at clean-up sites for:

- Deciding among alternative remedies

- Improving existing remedies

Conclusions

- Yes, it's feasible to <u>estimate</u> the environmental footprint of a corrective action remedy.
- Importance of including off-site manufacturing activities in estimations of the environmental footprint.
- A methodology would be helpful for conducting this type of study at other sites.

NEXT STEPS

• Complete four additional pilots

- Continue to refine the methodology
- Develop guidance document
- Promote Green Remediation in general and exchange information with others interested

Promoting Green Remediation

Reducing the Environmental Footprints of Our Site Clean-ups