Gaining a Better Understanding of Vapor Intrusion Using a 3-D Modeling Approach Revised

Brown University, Division of Engineering

Ozgur Bozkurt, <u>Kelly G. Pennell</u>, Eric M. Suuberg

Introduction

As part of the Superfund Basic Research Program (SBRP) Brown developed a 3-D mathematical representation of vapor intrusion

VI is one of seven other projects being researched within the SBRP.

For more information, visit: www.brown.edu/sbrp

www.vaprotect.com/images/2006/10/17/graphic.gif

Modeling Approach

A finite element model (Comsol) is used to evaluate vapor intrusion using conventional fate and transport processes

The model solves the problem in 3 steps:

- 1. Gas flow through soil (Darcy's Flux)
- 2. Species transport
- Indoor air concentration is calculated as a function of building exchange rate, soil gas flow into the building and concentration at the crack

Gas Flow Through Soil

 $q = \frac{-\kappa \rho}{\mu} \frac{dP}{dx}$ Darcy's Law for one dimensional incompressible flow

Darcy's Law for incompressible

P Low

4

q : specific dischrg (L/T) κ : permeability of the soil (L^2) μ :visc.of the fluid (M / LT) ρ : density of the fluid (M/L^3) ϕ : fluid potential *P*: pressure of the fluid (M / LT^2) z: elevation (L) g: gravitational acceleration (L/T^2)

P High

Species Transport

$$\frac{\partial C_i}{\partial t} + \nabla F_i + R_i = 0$$

$$C_i = \eta_g C_{ig} + \eta_w C_{iw} + S_i \rho_b$$

$$F_i = q_g C_{ig} + q_w C_{iw} - D_{ig} \nabla C_{ig} - D_{iw} \nabla C_{iw}$$

Partitioning:

$$C_{ig} = H_i C_{iw}$$
$$S_i = K_{oc,i} f_{oc} C_{iw}$$

Non-aqueous liquids (NAPL) and residual contamination in groundwater and/or soil can act as the source for vapor contamination

Scenario Modeled

Effect of Geology on Vapor Intrusion on Indoor Air

Permeability	Q (m³/s)	Conc. at crack (mg/m ³)	C indoor (mg/m ³)	C _{indoor air} = Q*C _{ck}
High (K= 1E-9 m ²)	5.4E-3	51	7.1	V _b *A _e +Q
Moderate (K= 1E-11 m ²)	5.4E-5	110	1.8E-1	233 m ³
LOW (K= 1E-14 m ²)	5.4E-8	110	1.8E-4	

Atmospheric dilution is greatest for high permeabilities

Concentration Profiles and Sample Location

Center of House 6 inches beneath foundation	Permeability	Sampling Location (mg/m ³)	Indoor Air (mg/m³)	C _{indoor} /C _{sampling.}
	High (K= 1E-9 m ²)	190	7.1	3.6E-2
	Moderate (K= 1E-11 m ²)	190	1.8E-1	9.3E-4
	LOW (K= 1E-14 m ²)	190	1.8E-4	9.4E-7

10

Effect of Geology on Sampling Depth for Characterization

4 m from house 2 m bgs	Permeability	Sampling Location (mg/m ³)	Indoor Air (mg/m ³)	C _{indoor} /C _{sampling.}
	High (K= 1E-9 m ²)	7.5	7.1	0.95
	Moderate (K= 1E-11 m ²)	64	1.8E-1	2.8E-3
	LOW (K= 1E-14 m ²)	78	1.8E-4	2.3E-6

Effect of Geology on Sampling Depth for Characterization

4 m from building 4 m bgs	Permeability	Sampling Location (mg/m ³)	Indoor Air (mg/m ³)	C _{indoor} /C _{sampling}
	High (K=1E-9 m ²)	44	7.1	0.16
	Moderate (K=1E-11 m ²)	135	1.8E-1	1.3E-3
	LOW (K=1E-14 m ²)	145	1.8E-4	1.2E-6

14

Effect of Geology on Sampling Depth for Characterization

4 m from house 6 m bgs	Permeability	Sampling Location (mg/m³)	Indoor Air (mg/m ³)	C _{indoor} /C _{sampling.}
	High (K= 1E-9 m ²)	130	7.1	5.6E-2
	Moderate (K= 1E-11 m ²)	205	1.8E-1	8.8E-4
	LOW (K= 1E-14 m ²)	210	1.8E-4	8.6E-7

Concentration profiles are dependent on geology type.

More permeable soils have greater potential for vapor intrusion risks, but tighter geologies may have higher subsurface vapor concentrations.

Simple Layered Geology

Permeability	Q (m³/s)	Conc. at crack (mg/m³)	C indoor (mg/m³)
High	5.4 E-3	50.	7.1
Moderate	5.4E-5	110	1.8E-1
Low	5.4E-8	110	1.8E-4
Layered	4.4E-3	3.5	0.42

Recall:

Summary and Conclusions

- High soil gas concentrations do not necessarily indicate high vapor intrusion rates
- Low soil gas concentrations do not necessarily indicate low vapor intrusion rates
- The effects of geology should be carefully considered when designing a sampling plan
- Consequences of both gas transport and species transport should be considered before developing a sampling plan, or interpreting sampling results

Future Research Goals

- Evaluate the effect that sampling rate may have sample concentration (i.e. can sampling reverse gas flow into the building)
- Continue to evaluate geologic heterogeneities
- Consider more complex partitioning and biodegradation processes

Acknowledgements

This research is funded by the Superfund Basic Research Program at Brown University through a grant from the National Institutes of Environmental Health Sciences.

Contacts:

Kelly G. Pennell (kelly_pennell@brown.edu) Eric M. Suuberg (eric_suuberg@brown.edu)