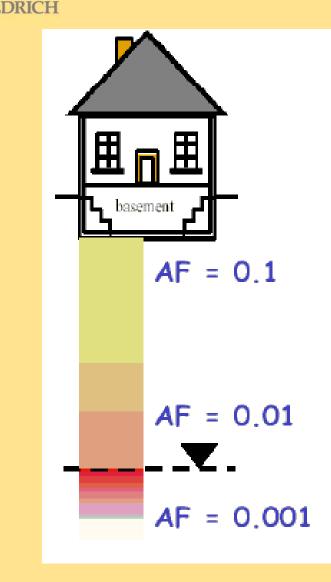
Observed Sub-slab to Indoor Air Attenuation Factors (AF) for Industrial and Commercial Buildings

HALEY&

Vapor Intrusion In Commercial and Industrial Buildings

23/24 September 2008


Rosemary A McCafferty Senior Risk Assessor Haley & Aldrich, Inc. rmccafferty@haleyaldrich.com

Outline

- Attenuation Factor (AF)
 - Definitions
 - EPA,
 - NYSDOH
- Sampling Methods
 - Sub-slab point Installation
- Industrial / Commercial Building
 - Case Study Data
- Factors Influencing AFs

USEPA Screening Levels

HALEY&

Attenuation factor (AF or alpha) is defined as:

AF = Indoor air conc. / Soil gas conc. at source

- Select indoor air target screening level (IASL)
- Shallow (<=5 ft) soil gas screening level (SGSL_{shallow}) is 10x indoor air target screening level

 $SGSL_{shallow} = IASL \times 10$

 Deep (>5 ft) soil gas screening level (SGSL_{deep}) is 100x indoor air target level

 $SGSL_{deep} = IASL \times 100$

(H. Dawson, USEPA, 2002)

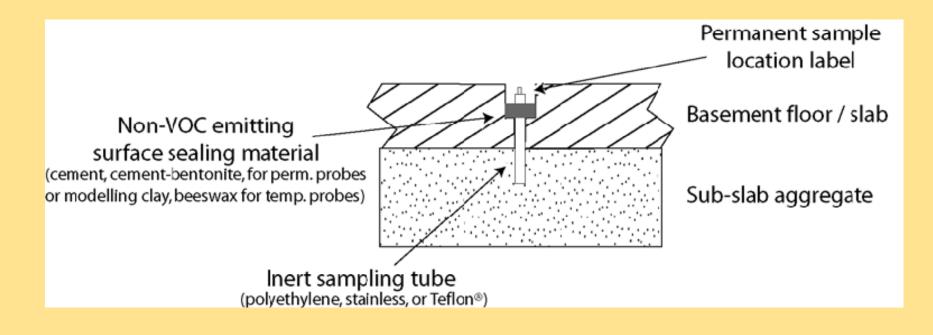
NYSDOH Decision Matrix

Soil Vapor/Indoor Air Matrix 1

WORKING DRAFT 02.23.05

SUBJECT TO CHANGE

		INDOOR AIR CONCENTRATION of COMPOUND (mcg/m ³)			
SUB-SLAB VAPOR CONCENTRATION of COMPOUND (mcg/m ³)		< 0.25	0.25 to < 2.5	2.5 to < 5.0	5.0 and above
< 5		1. No further action	 Take reasonable and practical actions to identify source(s) and reduce exposures 	 Take reasonable and practical actions to identify source(s) and reduce exposures and — 	 MITIGATE or — Take reasonable and
	Effective Attenuation Factor ~0.005		Monitor	practical actions to identify source(s) and reduce exposures — and — Monitor	
5 to < 50		5 No further action	6. Monitor	7. Monitor	8. MITIGATE
50 to < 250		9. Monitor	10. Monitor	11. MITIGATE	12. MITIGATE
250 and above		13. MITIGATE	14. MITIGATE	15. MITIGATE	16. MITIGATE

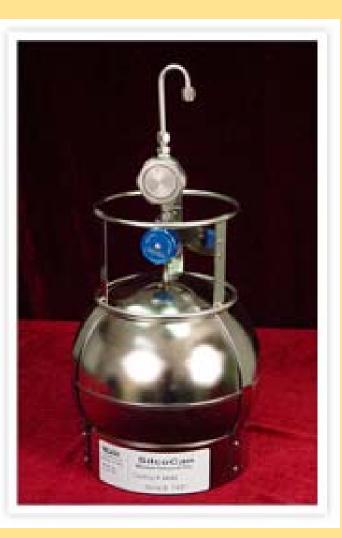

Sampling Strategy

- Sub-slab Samples
 - Semi-permanent Point (AMS GVP Tip)
 - Sand Pack with Bentonite Seal

Tip with umbrella and optional screen.


```
Umbrella folds when 
inserted into tip.
```


Sampling Methods


- Field Screening
 - Soil Vapor
 - Tedlar Bag
 - Evacuated Canister
 - PID/ GC-FID
 - Ambient Air
 - Vacuum Readings
 - Back-up Cans/Controllers

Sampling Strategy

- Sampling Time
 - 8 hr
 - Worker Exposure
- Sample Size
 - 6 L

- Field Quality Assurance
 - Blank Samples
 - Batch Container Certification
 - Background Samples
 - Ambient Air
- Lab Quality Assurance
 - Method Blanks
 - Lab Duplicates
 - LCS/LCSD

* Photo Courtesy of CAS Labs

HALEY & Sampling Methods

- Co-located Samples
 - Simultaneous Collection

HALEY & Background Samples

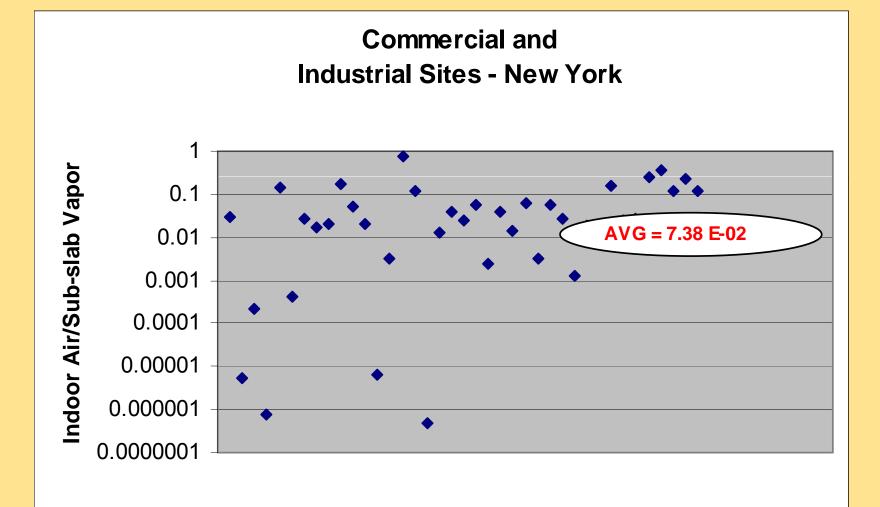
Inconspicuous Upwind Location

- Active Industrial Manufacturing Facility
 - 6-10 inch Concrete Foundation
 - Numerous sub-basements/vaults and sumps
- Subsurface soil Impacts
- Groundwater Impacts
- Biased Sampling
 - Source Areas
 - Office Spaces

- Active Manufacturing Facility
- Low level Groundwater Contamination
 - Less than 10 ppb cVOC
- Warehouse space with basement
- Sub-slab samples collected less than 5ft from groundwater table.

- Former Heavy Industrial Manufacturing Building
 - Currently used for office space
 - 6 -18 inch concrete slab on spread footings
- Sub-slab soil contamination
- Limited groundwater impacts
- Sub-slab samples collected <5 ft from groundwater table.

- Retail/Commercial Building
 - 4-6 " concrete Slab on grade
- No Sub-slab soil sources
- Widespread Groundwater impacts
- Soil vapor samples collected >5 ft from groundwater table



Sampling Locations

Observed Attenuation Factors

HALEY&

Summary

- Factors influencing AFs at industrial Sites
 - Analytical Detection Limits
 - Foundation Construction
 - Facility size and volume
 - Source of Impacts
 - Soil/Groundwater
 - Soil Vapor Sample
 - Depth to GW
 - Ambient Background

Conclusions

- AFs can range from 1E-07 to 1E-01
- Facility Construction influences AFs
- Independent of cVOC detected
- Site Specific AF can be developed to use Sub-slab concentrations to predict IA impacts.

Thank You

- Questions
- For more information visit
 - <u>www.haleyaldrich.com/viservices</u>
 - Denis Conley Senor Scientist Dconley@haleyaldrich.com