

The significant problems we face cannot be solved at the same level of thinking we were at when we created them. Albert Einstein

Sustainability in Remediation

DuPont has been successful applying sustainability information in manufacturing. We want to do the same in the world of cleanups.

Sustainability means many different things, depending on the application and the stakeholders.

DuPont wants to use the most sustainable methods we can identify, and suggests that more sustainable cleanup methods should be given priority.

We believe that selecting a sustainable remedy may consider: protecting HH&E, global warming, recycling, resource preservation, waste generation, safety, etc...

Key Points

Sustainability can make a real difference in remedy selection and in remedy implementation. It should not dominate the decision process

Sustainability estimation can help quantify several of the current remedy selection criteria

Life cycle analysis is the method most likely to succeed

Cooperation is essential to making progress

What Sustainable Remediation Is – and What It's Not

It is:

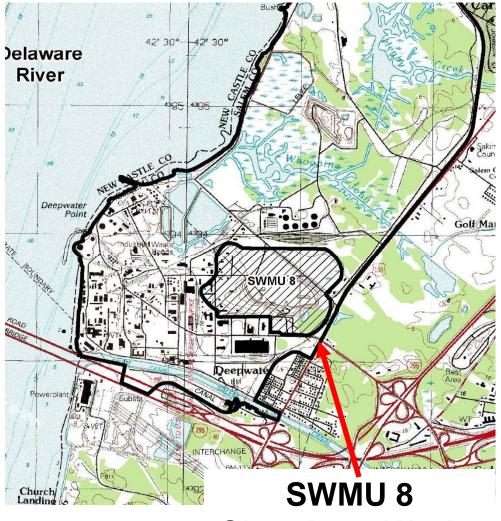
- A thought process with luck it is inclusive and creative
- An inclusive method to evaluate all off-site and global impacts
- A way to express your organization's values and to select cleanup methods that are fully consistent with them

It is **not**:

- A cost containment tool or a way to get MNA or TI decisions
- A fully developed method
- A regulatory philosophy, guidance or regulation
- Voodoo

DuPont Chambers Works

Largest solid waste management unit on site ~146 acres


- Used for solid and liquid waste management over decades
- Numerous historic and ongoing disposal and waste management activities

Remedial Investigation

- Multiple phases of investigation
- Targeted to specific issues/requests
- Data for many key elements and areas is not complete

SWMU is contained

- Groundwater impacts contained by Interceptor Well System
- Soil impacts mitigated by soil and stone cover

Chambers Works

Technologies Screened

Retained

Excavation

Stabilization

Capping

Bioventing

Landfill Bioreactor

Enhanced DNAPL Recovery (Steam and Possibly Surfactants)

Groundwater Capture

Not Retained

Barrier Walls – Sheet Pile or Slurry Wall

Chemical Oxidation

Other In Situ Thermal DNAPL Recovery

Total Waste Volume = 4,962,452 cubic yards

	13 ▼ f ∡	В	c	D	E	F	G	н	1
1	ï					· ·		- Focus Areas	
2					Parameter	Amount	Conversion	Units	Total
3	— Гусан				Gasoline (gallons)	1,104,009	0.010	CO ₂ ton/gal	11,040
4	Exan	ndie i			Diesel (gallons)	100,574,365	0.012	CO ₂ ton/gal	1,206,892
5		-			Consumable CO ₂ (tons)				1,509,266
6	Spread				CO2 Emmission from				0
7	Spread	Sneet: I			Gasoline (gallons)	1,104,003	41.6	kWh/gal	45,326,767
*		•••••			Diesel (gallons)	100,574,365	46.6	kWh/gal	4,686,765,383
9	F				Consumable Production and				1,301,115,648
10	Excav	ation i			Labor (hours)				4,303,132
11					Highway Miles				56,070,430
12					Groundwater (gallons) Soil (tons)				0 12,936,858
13			—÷		PVC (linear feet)				32,500
14 15					Steel (linear feet)				0
15					Cement (tons)				1,916,026
17					Carbon (tons)				638,675
18					HDPE (square footage)				23,522,400
19									
	Activity								
21	Mobilization/Demobilization								
22		Lump Sum	1						
23	Days	20							
24	Hours per Day	10							
25		Total Gasoline							800
26	Gasoline Vehicle	Support Trucks	Gallons per Day	Average MPG	Total Mileage		Days	Hours	Gallons
27		2	20	5	4000		20	400	800
28	Gasoline Equipment	Equipment 1	Gallons per Day				Days	Hours	Gallons
29		0	20				20	0	0
30		Total Diesel							800
31	Diesel	Support Trucks	Gallons per Day	Average MPG	Total Mileage		Days	Hours	Gallons
32	P : 1 P : 1	2	20	3	2400		20	400	800
33	Diesel Equipment	Equipment 1	Gallons per Day				Days 20	Hours	Gallons O
34		Total Labor					20	0	1,600
35		Total Operators					Days	Hours	1,000
36		4					20	800	
38		Field Crew					Days	Hours	
39		4					20	800	
	Site Preparation and Clearing	*							
41		Acres	125.7						
42	Crews	4	Hours per Day	9					
43	Acres per day/Crew	3							
44	Days	10							
45		Total Gasoline							419
46	Gasoline Vehicle	Support Trucks	Gallons per Day	Average MPG	Total Mileage		Days	Hours	Gallons
47		2	20	2	838		10	189	419
48	Gasoline Vehicle		Gallons per Day	Average MPG	Total Mileage		Days	Hours	Gallons
49		0	35	5	0		10	0	0
50	Gasoline Vehicle		Gallons per Day	Average MPG	Total Mileage		Days	Hours	Gallons
51	On a Read and	0	50 College and Day	8	0		10	0	0
52	Gasoline Equipment		Gallons per Day				Days 10	Hours	Gallons
53	Canalias Environment	0	20 College per Day				10 David	0 Hours	0 Gallons
54	Gasoline Equipment	0	Gallons per Day 35				Days 10	nours 0	Gallons
55	Gasoline Equipment	0	Gallons per Day		+		Days	Hours	Gallons
56 57	Gasonne Equipment	0	S0				10	0 O	0 Gallons
58		Total Diesel							9,428
59	Diesel	Support Trucks	Gallons per Day	Average MPG	Total Mileage		Days	Hours	Gallons
	Dieser	1	20	2	419		10	34	210
6.0	Diesel		Gallons per Day	Average MPG	Total Mileage		Days	Hours	Gallons
60	Ditter.	0	125	8	0		10	0	0
61	1								
61 62	Diesel		Gallons per Day	Average MPG	Total Mileage		Days	Hours	Gallons
61	Diesel	0 Back Hoe		Average MPG 8	Total Mileage 0		Days 10	Hours	Gallons 0

Measures of Remediation Sustainability for SWMU 8

	Excavation	Stabilization	Bioremediation
Destruction In-situ Mobility Toxicity Volume	No No CO CO CO CO CO CO CO CO CO CO CO CO CO	No Yes	Yes Yes
Tons CO ₂	2,700,000	920,000	190,000
Exposure Hours Highway Miles	4,900,000 56,000,000	540,000 8,000,000	82,000 1,000
Odor Light PM 10, tons	High High 50,463	Moderate Moderate 7,163	None None 292

Some Equivalents of that CO₂ Differential

Take all 20,000 Univ of Delaware students to Hawaii for Spring Break 40 times

Drive 11,500,000 miles in Dave's Z4

Smelt 500,000 tons of steel to build 40 football stadiums

Reduce DuPont's annual CO₂ production by 8%

DuPont / EPA Sustainability Pilot Projects

DuPont volunteered our site in Martinsville, VA

We worked with EPA Region 3 and VA DEQ to evaluate three waste units that are ready for remedial action

We started by studying a previously remediated SWMU to gain mutual understanding of the process and tools

Martinsville Unit H1 Former Finish Oil Disposal Pond

COPC: Chlorinated VOCs in soil, soil vapor and groundwater; PCBs, coal ash (arsenic) in soil only.

Former pond filled with coal ash and site soils

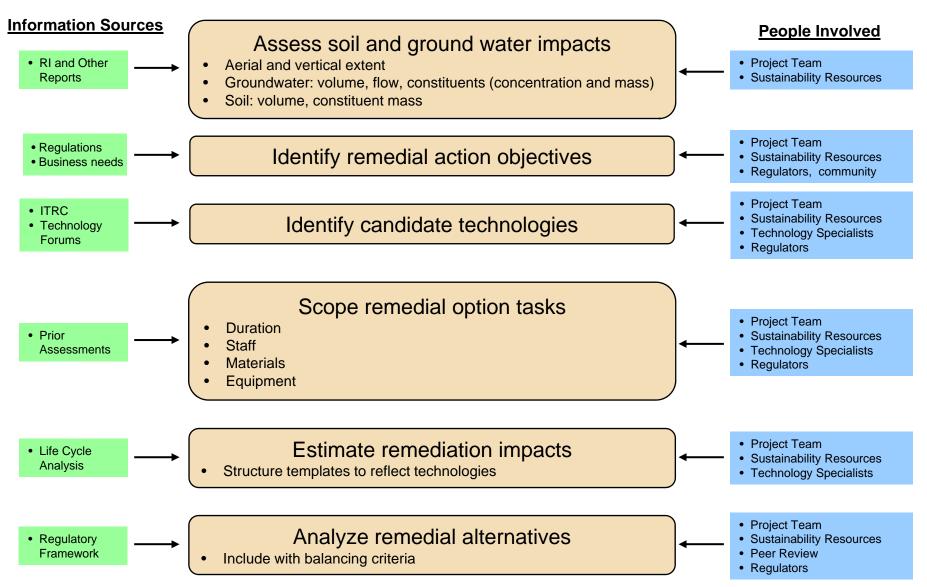
Nearly round, approximately 100' diameter

Residual impacts 3.5 to 4.5 feet bgs

Then - 1970's

Now - 2004

April 10 Outcome: Unit H1 Potential Remedial Measures


- Source remediation mitigate groundwater impacts
- Soil
 - **Excavation (source material removal) and landfill
 - **Cap (geomembrane)
 - *SVE
 - In-situ Stabilize
 - **Chem-reduction ZVI/Clay optimized treatment
 - Enhanced bio
 - In-situ thermal & vapor capture
 - (--)Excavate & Ex-situ thermal treatment
 - (--)Excavate & Chem-ox (not effective chlorinated orgs & high oil demand)

- Groundwater Meet MCL's (GPS) in plume and surface water standards in discharge to river
- Groundwater (source area or river)
 - *MNA
 - (--)PRB Iron (river)
 - *Enhanced bioremediation
 - *Pump and treat (strip and carbon adsorption) source and river
 - Air sparge w/vapor capture (akin to Unit G) – option w/windmills - source
 - In-situ chem-ox (source)
 - In-well stripping

• Excavate and soil wash

Framework for Sustainable Remediation Assessment

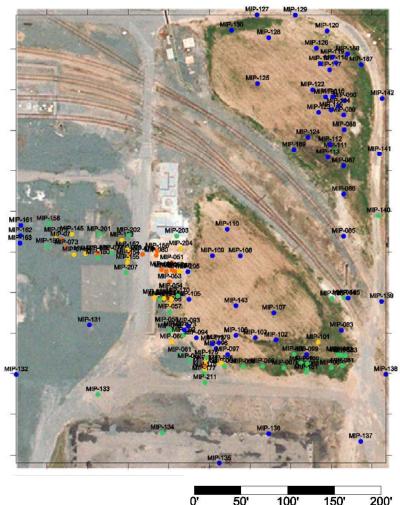
Martinsville H1 Technology Screening

Source Area Remedies	Protect HH &E	Control Sources	Meet Cleanup Objectives	Selection
Bio-barrier	Unlikely	Unlikely, source concentrations high (bio not very effective at high concentrations)	Unlikely	Poor
Bioventing	Unlikely	Uncertain, oxygen demand will be very high due to waste oil in source	Uncertain. Reduces some constituents, but source concentrations likely inhibit degradation.	Poor
Capping	Yes, when combined with MNA	Yes, by eliminating migration	Yes (constituents remain)	Good
Chemical Oxidation (In Situ)	Unlikely	Uncertain, oxygen demand will be very high due to waste oil in source. CFC-11 expected to be highly resistant to oxidation	Uncertain. Other constituents, including waste oils may interfere with reaction	Poor
Chemical Reduction	Unlikely	Source is already highly reduced. CFC-11 appears resistant to reduction.	Uncertain. Other constituents, including waste oils may interfere with reaction.	Poor
Excavation & Off- Site Disposal	Yes, when combined with MNA	Yes, by removal	Yes (complete removal)	Good
Ex-Situ Thermal Desorption	Yes, when combined with MNA	Yes, by treatment	Yes (some constituents remain, metals)	Good
In Situ Bioremediation	Unlikely	Unlikely, No evidence of degradation to CFC-11	Unlikely	Poor
Options graded "Goo	d" are considered adequa	te treatment options and are passed onto the selecti	ion screening, which factors in balancing criteria.	
Options graded "Fair"	are not recommended ar	nd would only be considered in the absence of more	effective options.	

Options graded "Poor" are either not applicable to the treatment of the constituents present or there is such great uncertainty regarding the effectiveness of the

option at this location

14



Martinsville H1 Remedy Selection Matrix

	Protect HH &E	Control Sources	Meet Cleanup Objectives	Long-term reliability	Reduction of T, M, V	Short-term effectiveness	Ease of implementation	Cost	Community acceptance	State acceptance	Sustain	ability
Source Area	Source Area Remedies											
ZVI-Clay In-Situ Treatment	Yes, when combined with MNA	Yes, by treatment	Yes	High	High due to treatment	Moderate 3,800 hours 9,900 miles	Moderate	\$\$	Highly acceptable	Highly acceptable	CO ₂ Adj. CO ₂ Efficiency:	182 ton 41 ton 0.003
Excavation & Off-Site Disposal	Yes, when combined with MNA	Yes, by treatment	Yes	High	None	Moderate 4,400 hours 109,000 miles	Simple	\$\$	Acceptable	Acceptable	CO ₂ Adj. CO ₂ Efficiency:	251 ton 251 ton 0.000
Ex-Situ Thermal Desorption	Yes, when combined with MNA	Yes, by treatment	Yes	High	High due to treatment	Low 7,100 hours 11,800 miles	Complex	\$\$	Acceptable	Acceptable	CO ₂ Adj. CO ₂ Efficiency:	592 ton 451 ton 0.0008
Soil Vapor Extraction	Yes, when combined with MNA	Yes, by treatment	Yes	High	Moderate	Low 6,700 hours 17,000 miles	Moderate	\$\$	Highly Acceptable	Highly acceptable	CO ₂ Adj. CO ₂ Efficiency:	677 ton 536 ton 0.0007
Capping	Yes, when combined with MNA	Yes, by treatment	Yes	Moderate	Moderate, eliminate mobility	High 820 hours 1,600 miles	Simple	\$	Acceptable	Acceptable	CO ₂ Adj. CO ₂ Efficiency:	24 ton 24 ton 0.000
Groundwate	er - MNA in ad	dition to thos	se listed abov	e (assessme	nt not include	d with above)					_	
MNA	Yes, mitigate migration	N/A	Yes	Yes	High	1,000 hours 8,600 miles	Simple	\$	Acceptable	Acceptable	CO ₂ Adj. CO ₂ Efficiency:	5 ton 0 ton 0.09

Oakley, CA: DTSC Pilot Project, EPA Region 9

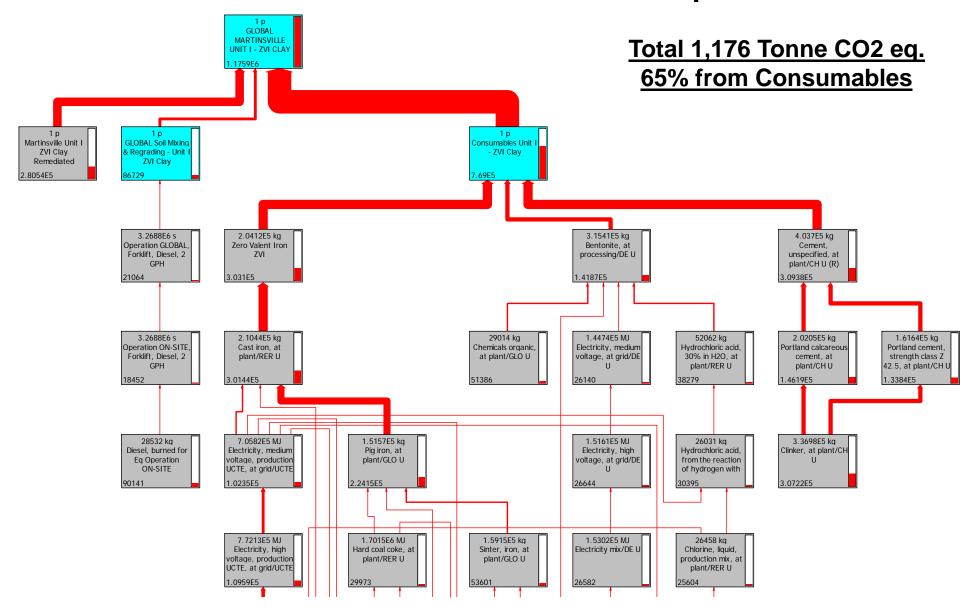
- Sustainability of investigation methods: Done
- Value of information:
 Done
- Scope of remedial action: In progress
- Remedy selection: Not started

Life Cycle Analysis for Sustainability

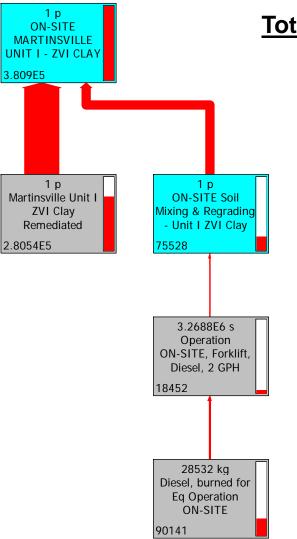
- A internationally standardized tool for evaluating the overall impacts of any products or activities
- Based on peer-reviewed data
- Helps one consider the holistic environmental burdens resulting from products or processes
- Inform consumers, industry, and government on the environmental tradeoffs of alternative products/services
- Enables a simple comparison of on-site vs. off-site impacts and the impact of including consumables

Impacts of CSU's ZVI/Clay Remediation

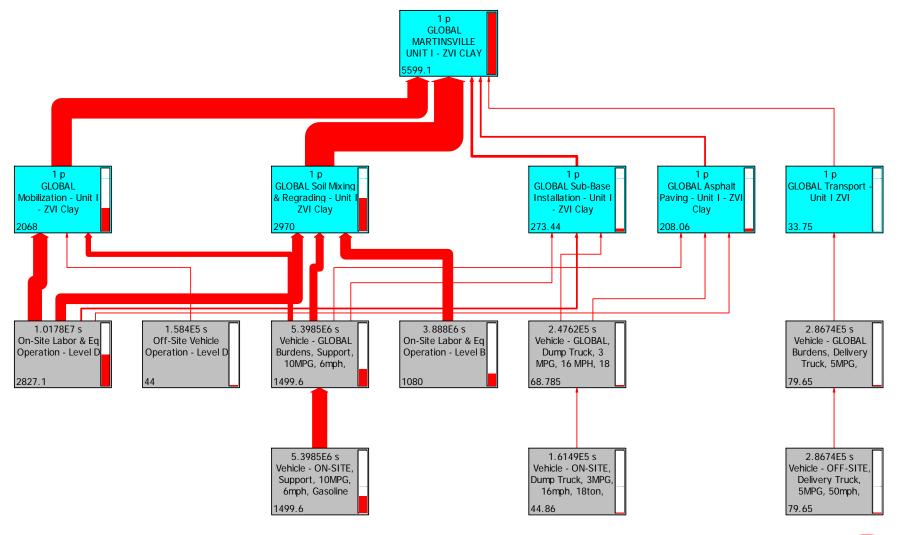
60 days Duration 0 5,300 Man hours 0 Zero Valent Iron 225 ton Kaolinite 340 ton **Kiln Dust** 445 ton Asphalt 886 ton 240,000 gal Water 9,900 gal Gallons of fuel
\$900,000 0.5 acre, 20 ton 0.5 acre, 20 tons CCl₄


													19	9
N 🖻	hicr	osoft Excel - CRG_L	Jnit I_011	509.xls										
10		; 🖬 🖪 🖪 🖪 🕻	🕫 📖 🐰	. 🗈 🝼 i 🛄 (50% 👻	🚆 Arial	- 1	2 - B <i>I</i> <u>U</u>	e <mark>e</mark> 3	• a • \$ %	• •.0 .00 • •.00 →.0	8 💷 💷 🔛	- 🖄 - A	
:2)						indow <u>H</u> elp						e a question for he		
			e r <u>o</u> rnae	Toop Ford	<u></u>						178			- ···
8	Ŧ													
	F1													
12		A	В	С	D	E	F	G	Н	1	J	К	L	
	1	DuPont Confidenti	al											
	2	Greenhouse G		Energy U	-	Occupational	Risk	Resource Us	sage	Loca	I	Consum	ables	
	3	(Tons of CO 2 Equi	valents)	(kWh)										_
	4	Gasoline	9	Gasoline	38,678	Level A Exposure Hrs		Potable Water (gal)	250,000	Dust Generation	Moderate	Gasoline (gal)	930	_
	5	Diesel	129	Diesel	467,628	Level B Exposure Hrs	1080	Total Groundwater (gal)	0	Noise Level	Moderate	Diesel (gal)	10,035	_
	~	Contaminant Degradation	6.38	PVC	0	Level C Exposure Hrs		Groundwater Retained in F	0	Traffic Congestion	Moderate	PVC (Total Ib)	0	_
	7	PVC	0	Steel	0	Level D Exposure Hrs	4,519	Soil (tons)	450	PM-2.5, ton	2	Steel	0	_
	8	Steel	0	HDPE	0	Total G&D On-Site Milea	8,998	Landfill Space (ac-ft)	0	PM-10, ton	14	HDPE	0	_
	9	HDPE	0	GranulatedCarbon	0	Total D Off-Site Mileage	5,683	Land (Acre)	0.25	NOx, ton	3.16	GranulatedCarbon	0	_
	10	GranulatedCarbon	0	Cernent	0	Total G Off-Site Mileage		Air	0	SOx, ton	0.27	Cement	0	_
	11	Cernent	0	Concrete	0					VOCs, ton	0.17	Concrete	0	_
	12	Concrete	0	ZVI Marka	1,669,500							ZVI Mareka	225	-
	13	ZVI	297	Kaolinite Käs Duot	1,055,700							Kaolinite Kao Dust	345	-
	14	Kaolinite Käs Duot	162	Kiln Dust	358,670							Kiln Dust	445	-
	15	Kiln Dust	340	Potable Water	1,000 0							Asphalt Cold Factors	428	-
	16	Potable Water Total Groundwater	0	Total Groundwater Soil	3,600							Grid Energy Bronner	0	-
	17	Soil	1	Asphalt	3,600							Propane	0	-
	18	Asphalt	20	Aspriat Grid Energy	0									-
-	19 20	Grid Energy	0	Propane	0									-
-	20	Propane	0		Ť									-
-	21	· · - P -···	-											-
	22													-
	23													
	25													-
	26													_
	27	TOTAL	966	TOTAL	3,904,405									~
14 4	•	N/OS/P_NoC/V	Vorker_Exp	/P/G_NoI/	g∕ zvi-cl	ay In-Situ Treatmen	t <mark>∖ZVI</mark> -	Clay In-Situ <					>	
Dra														
Read	ły											NUM		

SimaPro Remediation Assemblies


• 52.102.121.68 Wefault w716_120408; Remediation	n 2009 Alt - [Edit assembly product sta	ige 'PROJECT Asph	alt 🔳 🗖 🔀
S File Edit Calculate Tools Window Help			_ 8 ×
🗋 🚵 🍰 🔒 📚 🛸 🖻 健 🔎 🖾 🖦 A+C Input/output Parameters	A+B 🎭 🐍 💷 🛍 🔽 🧐 🝋		
Name Image PROJECT Asphalt Paving - Unit I - ZVI Clay			
Status			
Materials/Assemblies	Amount Unit	Distribution SD^	2 or 2*SDMin
Materials/Assemblies (Insert line here)	Amount Unit	Distribution SD^	2 or 2*SDMin
	Amount Unit	Distribution SD^	2 or 2*SDMin Distribution
(Insert line here)			
(Insert line here) Processes	Amount	Unit	
(Insert line here) Processes Vehicle - ON-SITE, Support, 10MPG, 6mph, Gasoline	Amount Days*HPD*2 = 59.444	Unit	
(Insert line here) Processes Vehicle - ON-SITE, Support, 10MPG, 6mph, Gasoline Vehicle - PROJECT, Dump Truck, 3 MPG, 16 MPH, 18 ton, Diesel	Amount Days*HPD*2 = 59.444 TruckDays*HPD*Trucks = 29.722	Unit hr hr	
(Insert line here) Processes Vehicle - ON-SITE, Support, 10MPG, 6mph, Gasoline Vehicle - PROJECT, Dump Truck, 3 MPG, 16 MPH, 18 ton, Diesel Operation ON-SITE, Asphalt Spreader, Diesel, 4 GPH	Amount Days*HPD*2 = 59.444 TruckDays*HPD*Trucks = 29.722 Days*HPD*1 = 29.722	Unit hr hr hr hr	
(Insert line here) Processes Vehicle - ON-SITE, Support, 10MPG, 6mph, Gasoline Vehicle - PROJECT, Dump Truck, 3 MPG, 16 MPH, 18 ton, Diesel Operation ON-SITE, Asphalt Spreader, Diesel, 4 GPH Operation ON-SITE, Roller, Diesel, 4 GPH	Amount Days*HPD*2 = 59.444 TruckDays*HPD*Trucks = 29.722 Days*HPD*1 = 29.722 Days*HPD*1 = 29.722	Unit hr hr hr hr hr	
(Insert line here) Processes Vehicle - ON-SITE, Support, 10MPG, 6mph, Gasoline Vehicle - PROJECT, Dump Truck, 3 MPG, 16 MPH, 18 ton, Diesel Operation ON-SITE, Asphalt Spreader, Diesel, 4 GPH Operation ON-SITE, Roller, Diesel, 4 GPH Operation ON-SITE, Backhoe, Diesel, 4 GPH	Amount Days*HPD*2 = 59.444 TruckDays*HPD*Trucks = 29.722 Days*HPD*1 = 29.722 Days*HPD*1 = 29.722 Days*HPD*1 = 29.722 Days*HPD*1 = 29.722	Unit hr hr hr hr hr hr hr	Distribution
(Insert line here) Processes Vehicle - ON-SITE, Support, 10MPG, 6mph, Gasoline Vehicle - PROJECT, Dump Truck, 3 MPG, 16 MPH, 18 ton, Diesel Operation ON-SITE, Asphalt Spreader, Diesel, 4 GPH Operation ON-SITE, Roller, Diesel, 4 GPH Operation ON-SITE, Backhoe, Diesel, 4 GPH On-Site Labor & Eq Operation - Level C	Amount Days*HPD*2 = 59.444 TruckDays*HPD*Trucks = 29.722 Days*HPD*1 = 29.722	Unit hr hr hr hr hr hr hr hr	Distribution

Martinsville Unit I - All GHG Impacts


Martinsville Unit I On-Site GHG – kg CO2 eq.

Martinsville Unit I – Worker exposure by Process

LCA Conclusions and Recommendations

Life cycle analysis provided much more complete information than other methods

VOC losses should be considered to fully understand the net environmental benefit or impact of a remedial action

The impact of off-site and on-site consumables must be included in remediation sustainability estimates

Sustainable Remediation Forum

A collaborative forum to develop ability to use sustainable concepts in remedial action decision making

Share perspectives, experiences, site-specific examples

A public forum

- State and federal agencies: US EPA, California DTSC, DNREC, UK Environment Agency, US DOE, US ACE, NJ DEP and others
- Industry: DuPont, BP, Shell, CN Rail, Chevron, National Grid, Waste Management, United Technologies, etc...
- Consultants: GeoSyntec, URS, Terra Systems, AECOM, ERM etc...
- Academics: NJIT, Colorado State, Univ. of Edinburgh
- Public stakeholders: CL:AIRE

All are welcome. Meeting records are publicly available SURF UK is creating a UK regulatory framework for SR

Sustainable Remediation Forum (SURF)

Mission Statement:

To establish a framework that incorporates sustainable concepts throughout the remedial action process, that provides long-term protection of human health and the environment, and that achieves public and regulatory acceptance

SURF Sustainable Remediation Principles

In fulfilling our obligation to remediate sites to be protective of human health and the environment we will embrace sustainable approaches to remediation that provide a net benefit to the environment.

To the extent possible, our approaches will:

- Minimize or eliminate energy consumption or the consumption of other natural resources
- Reduce or eliminate releases to the environment, especially to the air
- Harness or mimic a natural process
- Result in the reuse or recycling of land or otherwise undesirable materials
- Encourage the use of remedial technologies that permanently destroy contaminants

27

Public Engagement – Sustainable Remediation Forum

How SURF Operates

- Membership in SURF is based upon contribution of effort
- SURF members are asked to be active contributors to projects. This includes a significant amount of time working on our projects *in addition to time spent attending meetings*
- SURF finds that it is very helpful if there is continuity from member organizations i.e. the same person represents them at all meetings
- Agendas are created by ad hoc committees who volunteer at the end of each meeting
- SURF is evolving from an information sharing group to a working group. More of our time together is spent in work groups charged with specific tasks

SURF White Paper - "Integrating Sustainability Principles, Practices and Metrics into Remediation Projects"

The purpose of the SURF white paper is to collect, clarify, and communicate the thoughts and experiences of SURF members on sustainability in remediation.

- Introduction and Scope: Dave Ellis & Paul Hadley
- Current Status of Sustainability in Remediation: Dick Raymond
- Sustainability concepts and Practices in Remediation: Stephanie Fiorenza
- A Vision for Sustainability: Paul Favara
- Impediments and Barriers: Dave Major
- Application of Sustainable Principles, Practices, and Metrics to Remediation Projects: Brandt Butler
- Summary, Conclusions, and Recommendations: Dave Ellis & Paul Hadley

The white paper will be published as a special issue of "Remediation"

Next Steps for SURF

- Create a formal organization
- Communicate what we are learning and will learn
- Participate in developing and implementing appropriate atandards and metrics across our industry
- Help society develop a consensus on the value of sustainability relative to other values used for making remedial decisions

Sustainable Remediation Process Observations

- Only remedies that are fully protective of human health and the environment should be considered
- Considering sustainability changes our thought process
- Our engineers worked together more closely, quality improved
- Some unexpected and very creative remedies have been proposed.
 Some are less costly, others more costly
- Processing potential remedies and sustainability together with agencies allows more efficient decision making
- Don't over analyze it's dark underground

Remediation Sustainability Challenges

- Work together
- Find appropriate ways to represent sustainability in regulation
- Maintain a balance between sustainability and other criteria
- Develop useful sustainability methods and metrics LCA
- Be deliberate about the tradeoffs you make

Key Points

Sustainability can make a real difference in remedy selection and in remedy implementation. It should not dominate the decision process

Sustainability estimation can help quantify several of the current remedy selection criteria

Life cycle analysis is the method most likely to succeed

Cooperation is essential to making progress

What Sustainable Remediation Is – and What It's Not

It is:

- A thought process with luck it is inclusive and creative
- An inclusive method to evaluate all off-site and global impacts
- A way to express your organization's values and to select cleanup methods that are fully consistent with them

It is **not**:

- A cost containment tool or a way to get MNA or TI decisions
- A fully developed method
- A regulatory philosophy, guidance or regulation
- Voodoo

Discussion

"If you don't know where you are going, you might end up someplace else"

Yogi Berra

36