Overview - What is Radio Frequency Heating (RFH)? - Why and how is RF applied to in situ thermal remediation? - For what sites and contaminants may RFH be appropriate? - What are the limitations and costs of RFH? - Case Study TCA DNAPL Abatement in Fractured Bedrock # Is RFH the hottest new thing? - It certainly is hot (Temps up to 400 °C) - "Innovative" or "new" as a remedial technology - Is a well established technology: - The use of high-frequency electric fields for heating dielectric materials had been proposed in the 1930s. For example, US patent 2,147,689 (application by Bell Telephone Laboratories, dated 1937) - De-infestation of food stocks (grains, flour, walnuts) - Medical applications (muscle relaxation, control bleeding, medical waste sterilization) - Industrial drying of inks, paper, yarns, biscuits, crackers and other food products Source: (http://en.wikipedia.org/wiki/Dielectric_heating # Why Use RF for in In Situ Thermal Remediation? - RF energy propagates through all media (solid, liquid and gas) over a volume = heats evenly and quickly over relatively large volume - The distribution of RF energy is not limited by structural features, permeability or heterogeneity of the host (overburden or bedrock) - RF energy preferentially heats the target = polar molecules such as water, oil, contaminants over the host (OB and rock) # For What Applications/Contaminants May RFH Be Appropriate? # Thermally Degrade 40 – 60 °C Hydrolysis, Enhance Bio. CVOCs, BTEX ### **Reduce Viscosity** 40 – 100°C Enhance Liquid Recovery LNAPL, Oils, Coal Tar ### Volatilize/Desorb 100 to 250 °C En. Vapor/Liquid Rec. BTEX, CVOCs, PCBs Stabilize/Destroy 250 to 400 °C - RF energy can be directionally focused, tuned in frequency and power to achieve spatial and thermal control for a full range of low to high temperature thermal applications (Bio, Abiotic, SVE, DPE, NAPL recovery) - RF energy can be applied in dry soil or below the water table from the surface to depth, vertically or horizontally - RFH systems can be operated beneath buildings, around utilities and configured to operate at active facilities with minimal surface expression or interference to site operations # **RFH System Components** - RF Generator Grid or Gen Set Powered – 25 to 500 kW - Antenna Array – Single antenna range from 3 to 100+ meters, deployed in vertical or horizontal wells - spacing may vary from to 3 to 15 meters - Conventional Coaxial Transmission Lines rigid, flexible, commercially available # **RFH System Design & Operation** - **Engineer Design** based on computer modeling of target, host and cleanup objectives - **Treatability Testing** of site samples to determine heating rates, loss tangent and time to reach target temperature - Construction, Start-up, O&M 4 to 8 weeks construction and start-up # **General Cost Range for In Situ RFH** - Costs are very site/application specific - Cost data per unit volume is determined based on application – to date- limited number of remedial applications limit cost data - General low end of cost range = \$100 to \$150 per cubic yard (RFH only, excluding investigation, drilling, monitoring, etc.)- may be higher - Cost are scaled to project needs and available resources – JR Technologies LLC maximizes existing consultant/client resources to reduce cost # **RFH Limitations/Considerations** - Innovative limited performance data preference for "proven" technologies - Limited availability- No known US vendors other than JR Technologies LLC in Great Barrington, MA - Customization RFH generators and transmission cables are "off-the-shelf" components- antenna are customized for the specific application - Safety- operation is within FCC Guidelines - Control of Vapor Phase often a necessary element # **RFH Case Study** # RFH of TCA DNAPL Source Area -Fractured Bedrock- 2003-2011 Link to Federal Remediation Technologies Roundtable Website: http://costperformance.org/profile.cfm?ID=438&CaseID=436 # RFH of TCA DNAPL In Fractured Crystalline Bedrock - Printed circuit board manufacturing operation from 1960s to late 1990s - 1998 discovered a release of 1,1,1-trichloroethane (TCA) beneath building - Regulated under Massachusetts Contingency Plan - Facility decommissioned all sources removed - Degreasing operations, TCA storage tanks, piping and acid neutralization tanks probable sources - Zone II Drinking Water Source Area down-gradient # Systematic Characterization 1999 - 2002 Outside-In/Top-Down - Lineament Analysis Fracture Trends in Bedrock - Seismic & VLF Geophysical Surveys Well Selection - Drilling by Coring & Air Rotary - Five Geophysical Borehole Logs to Identify waterbearing fractures - 38 Discrete Interval/Packer Tests of Chemistry & Flow - Hydraulic Testing- 24 Slug, 4 Step & 3 Pump - 102 Wells Conventional, Open & Flute Multiport - DNAPL Identification Using Hydrophobic borehole liners in 75% of source area wells # August 2002 August 2002 TCA Concentrations in Deep Bedrick and in Welland (Overlanden) August Montang Vel Claim (Joseph Land) Scale (Feet) 100 0 100 200 400 August Montang Vel Claim (Joseph Land) August Montang Vel Claim (Joseph Land) State Building State Building # **Remedial Program – Key Considerations** - ISCO Pilot 2000 Fenton's Reagent Reduction but Rebound - TCA DNAPL identified w/ Flute Liners 9 of 12 SA Wells - Remedial success = f(TCA DNAPL abatement) - Goal = Source Abatement Not MCLs - DNAPL as residual ganglia— not pooled, recoverable or mobile - Bedrock (gneiss) fractures poorly connected, low yield (<0.5 gpm) = push-pull technologies ineffective - SA beneath building/pavement at edge of basin divide = limited flushing - TCA half-life~ 3 years at 20°C is reduced to days at 50-60°C - Resistive heating cost prohibitive, steam limited by structure # WHY RFH Was A Good Match For Site Characteristics - RF propagates over volume- overcomes structural limitations of low yield, poorly connected bedrock - RF preferentially heats the target (polar molecules) verses the host (bedrock) - TCA half-life is days at 50-60°C = low temp. thermal - TCA degrades by hydrolysis → DCE + acetic acid (vinegar) - Building & Basin Divide → Reduced flushing, easier to heat target - Occupied Building Control vapor w/SVE and SSDS & operate RF Exposure w/in FCC TLVs Selected Remedy = Source abatement by RFH/SVE & MNA down-gradient # **RFH/SVE System** # **Results** - 2003-2006 RFH/SVE operated safely and largely remotely for 36 months - No VOCs in building/No RF above FCC TLVs - SVE Removed 145 lbs. VOCs - Achieved 52°C maximum temp. - Cost \$100-\$150 RFH only does not include investigation, drilling, SVE, or monitoring costs # Results - Five years (2007- 2011) of post-treatment monitoring: - Head and Tail of Plume Detached - 99% Avg. Decrease in TCA Treatment Area (221,000 ug/L to 2,300 ug/L) - 92% Avg. Decrease in TCA Down-gradient (23,000 ug/L to 2,000 ug/L) - 67% Avg. Decrease TCA in Zone II (900 ug/L to 300 ug/L) - VOCs reduced to ND in SW & SED in GW discharge areas