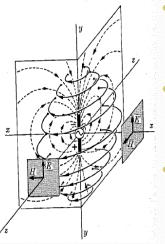


Overview

- What is Radio Frequency Heating (RFH)?
- Why and how is RF applied to in situ thermal remediation?
- For what sites and contaminants may RFH be appropriate?
- What are the limitations and costs of RFH?
- Case Study TCA DNAPL Abatement in Fractured Bedrock



Is RFH the hottest new thing?

- It certainly is hot (Temps up to 400 °C)
- "Innovative" or "new" as a remedial technology
- Is a well established technology:
 - The use of high-frequency electric fields for heating dielectric materials had been proposed in the 1930s. For example, US patent 2,147,689 (application by Bell Telephone Laboratories, dated 1937)
 - De-infestation of food stocks (grains, flour, walnuts)
 - Medical applications (muscle relaxation, control bleeding, medical waste sterilization)
 - Industrial drying of inks, paper, yarns, biscuits, crackers and other food products

Source: (http://en.wikipedia.org/wiki/Dielectric_heating

Why Use RF for in In Situ Thermal Remediation?

- RF energy propagates through all media (solid, liquid and gas) over a volume = heats evenly and quickly over relatively large volume
- The distribution of RF energy is not limited by structural features, permeability or heterogeneity of the host (overburden or bedrock)
- RF energy preferentially heats the target = polar molecules such as water, oil, contaminants over the host (OB and rock)

For What Applications/Contaminants May RFH Be Appropriate?

Thermally Degrade

40 – 60 °C Hydrolysis, Enhance Bio. CVOCs, BTEX

Reduce Viscosity

40 – 100°C Enhance Liquid Recovery LNAPL, Oils, Coal Tar

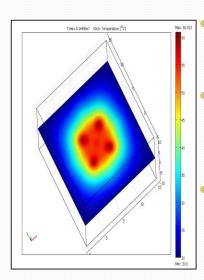
Volatilize/Desorb

100 to 250 °C En. Vapor/Liquid Rec. BTEX, CVOCs, PCBs

Stabilize/Destroy
250 to 400 °C

- RF energy can be directionally focused, tuned in frequency and power to achieve spatial and thermal control for a full range of low to high temperature thermal applications (Bio, Abiotic, SVE, DPE, NAPL recovery)
- RF energy can be applied in dry soil or below the water table from the surface to depth, vertically or horizontally
- RFH systems can be operated beneath buildings, around utilities and configured to operate at active facilities with minimal surface expression or interference to site operations

RFH System Components



- RF Generator Grid or Gen Set Powered – 25 to 500 kW
- Antenna Array
 – Single antenna range from 3 to 100+ meters, deployed in vertical or horizontal wells - spacing may vary from to 3 to 15 meters
- Conventional Coaxial
 Transmission Lines rigid,
 flexible, commercially available

RFH System Design & Operation

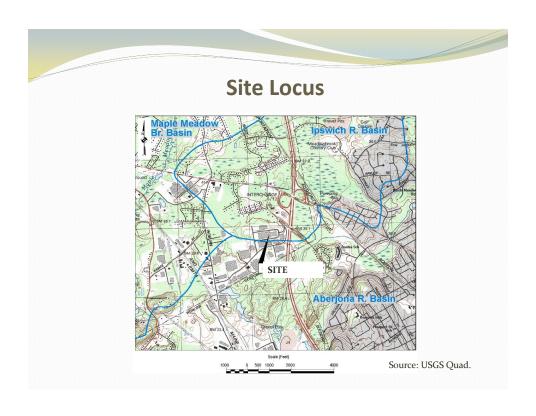
- **Engineer Design** based on computer modeling of target, host and cleanup objectives
- **Treatability Testing** of site samples to determine heating rates, loss tangent and time to reach target temperature
- Construction, Start-up, O&M 4 to 8 weeks construction and start-up

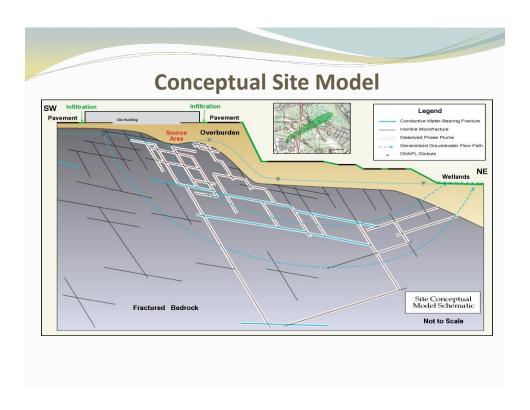
General Cost Range for In Situ RFH

- Costs are very site/application specific
- Cost data per unit volume is determined based on application – to date- limited number of remedial applications limit cost data
- General low end of cost range = \$100 to \$150 per cubic yard (RFH only, excluding investigation, drilling, monitoring, etc.)- may be higher
- Cost are scaled to project needs and available resources – JR Technologies LLC maximizes existing consultant/client resources to reduce cost

RFH Limitations/Considerations

- Innovative limited performance data preference for "proven" technologies
- Limited availability- No known US vendors other than JR Technologies LLC in Great Barrington, MA
- Customization RFH generators and transmission cables are "off-the-shelf" components- antenna are customized for the specific application
- Safety- operation is within FCC Guidelines
- Control of Vapor Phase often a necessary element


RFH Case Study


RFH of TCA DNAPL Source Area -Fractured Bedrock- 2003-2011

Link to Federal Remediation Technologies Roundtable Website: http://costperformance.org/profile.cfm?ID=438&CaseID=436

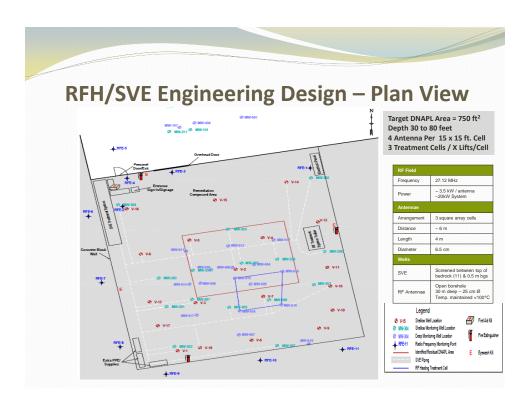
RFH of TCA DNAPL In Fractured Crystalline Bedrock

- Printed circuit board manufacturing operation from 1960s to late 1990s
- 1998 discovered a release of 1,1,1-trichloroethane (TCA) beneath building
- Regulated under Massachusetts Contingency Plan
- Facility decommissioned all sources removed
- Degreasing operations, TCA storage tanks, piping and acid neutralization tanks probable sources
- Zone II Drinking Water Source Area down-gradient

Systematic Characterization 1999 - 2002 Outside-In/Top-Down

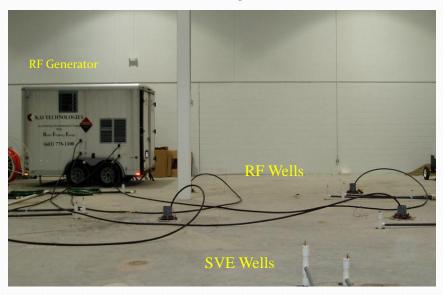
- Lineament Analysis Fracture Trends in Bedrock
- Seismic & VLF Geophysical Surveys Well Selection
- Drilling by Coring & Air Rotary
- Five Geophysical Borehole Logs to Identify waterbearing fractures
- 38 Discrete Interval/Packer Tests of Chemistry & Flow
- Hydraulic Testing- 24 Slug, 4 Step & 3 Pump
- 102 Wells Conventional, Open & Flute Multiport
- DNAPL Identification Using Hydrophobic borehole liners in 75% of source area wells

August 2002 August 2002 TCA Concentrations in Deep Bedrick and in Welland (Overlanden) August Montang Vel Claim (Joseph Land) Scale (Feet) 100 0 100 200 400 August Montang Vel Claim (Joseph Land) August Montang Vel Claim (Joseph Land) State Building State Building

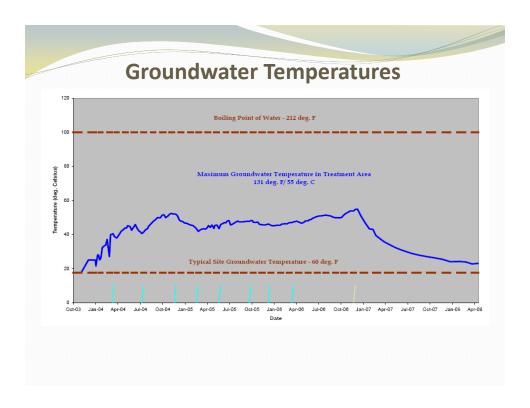

Remedial Program – Key Considerations

- ISCO Pilot 2000 Fenton's Reagent Reduction but Rebound
- TCA DNAPL identified w/ Flute Liners 9 of 12 SA Wells
- Remedial success = f(TCA DNAPL abatement)
- Goal = Source Abatement Not MCLs
- DNAPL as residual ganglia— not pooled, recoverable or mobile
- Bedrock (gneiss) fractures poorly connected, low yield (<0.5 gpm) = push-pull technologies ineffective
- SA beneath building/pavement at edge of basin divide = limited flushing
- TCA half-life~ 3 years at 20°C is reduced to days at 50-60°C
- Resistive heating cost prohibitive, steam limited by structure

WHY RFH Was A Good Match For Site Characteristics


- RF propagates over volume- overcomes structural limitations of low yield, poorly connected bedrock
- RF preferentially heats the target (polar molecules) verses the host (bedrock)
- TCA half-life is days at 50-60°C = low temp. thermal
- TCA degrades by hydrolysis → DCE + acetic acid (vinegar)
- Building & Basin Divide → Reduced flushing, easier to heat target
- Occupied Building Control vapor w/SVE and SSDS & operate RF Exposure w/in FCC TLVs

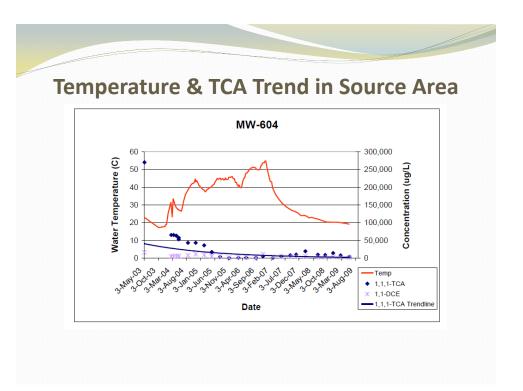
Selected Remedy = Source abatement by RFH/SVE & MNA down-gradient



RFH/SVE System

Results

- 2003-2006 RFH/SVE operated safely and largely remotely for 36 months
- No VOCs in building/No RF above FCC TLVs
- SVE Removed 145 lbs. VOCs
- Achieved 52°C maximum temp.
- Cost \$100-\$150 RFH only does not include investigation, drilling, SVE, or monitoring costs



Results

- Five years (2007- 2011) of post-treatment monitoring:
 - Head and Tail of Plume Detached
 - 99% Avg. Decrease in TCA Treatment Area (221,000 ug/L to 2,300 ug/L)
 - 92% Avg. Decrease in TCA Down-gradient (23,000 ug/L to 2,000 ug/L)
 - 67% Avg. Decrease TCA in Zone II (900 ug/L to 300 ug/L)
 - VOCs reduced to ND in SW & SED in GW discharge areas

