

REMEDIATION OF PFAS

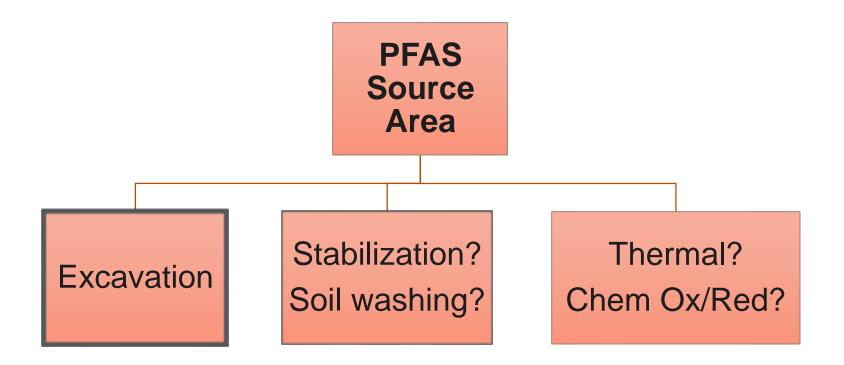
Allan Horneman Arcadis – Portland, ME

Available *In Situ* Treatment Technologies for PFAS

Technology ¹	Likelihood of Success?	Rationale			
Aerobic Biodegradation	Low	Biotransformation does not proceed past			
Anaerobic Biodegradation	Low	PFAAs			
Phytoremediation	Low	PFAAs not volatile; depth limitations			
Air Sparging/Vapor Extraction	Low	PFAAs not volatile nor biodegradable			
In-Situ Thermal Treatment	Low	Required temperature economically impractical; ex-situ waste management			
Groundwater Extraction and Ex- Situ Treatment*	High	Presumptive remedy for PFAS to-date, focus of this discussion; ex-situ waste management			
Chemical Oxidation/Reduction	Moderate	Bench-tests confirm; field evidence pending			
Monitored Natural Attenuation	Low	PFAAs do not biodegrade			
Permeable Reactive Barriers	High	Apply ex-situ sorption technologies with a funnel & gate; change outs required			

¹Limited to typical in-situ groundwater treatment technologies (other soil focused technologies like excavation and stabilization may be applicable for soils)

Property of Arcadis, all rights reserved


Alternative water treatment options

Compound	M.W. (g/mol)	Aeration	Coagulation Dissolved Air Floatation	Coagulation Flocculation Sedimentation Filtration	Conventional Oxidation (MnO_4 , O_3 , CIO_2 , CLM, UV- AOP)	Anion Exchange (select resins tested)	Granular Activated Carbon	Nano Filtration	Reverse Osmosis	
PFBA	214	assumed	assumed							
PFPeA	264									
PFHxA	314									
PFHpA	364									
PFOA	414									
PFNA	464					assumed	assumed			
PFDA	514					assumed	assumed			
PFBS	300									
PFHxS	400									
PFOS	500									
FOSA	499						assumed		assumed	
N-MeFOSAA	571	assumed				assumed	assumed	assumed		
N-EtFOSAA	585					assumed	assumed	assumed		
		Conventi	onal Treatr	ment		Sp	oecialized	d Treatmo	ent 🔸	
		> 90% removal > 10%, < 90% removal < 10% removal unknown		DICK	Dickenson and Higgins, 2016. Treatment mitigation strategi and perfluoralkyl substances, Water Research Foundation					

Alternative Source Zone Strategies

Current default strategy is excavation and P&T

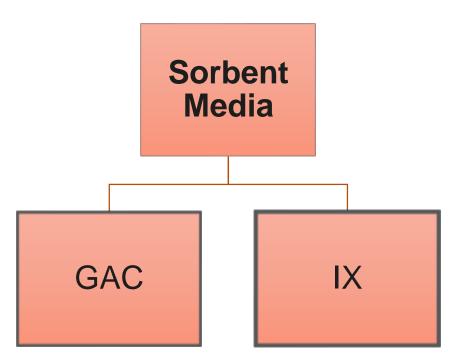
Property of Arcadis, all rights reserved

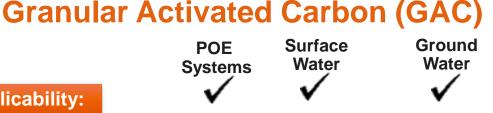
Injecting Activated Carbon (AC) into Aquifers

- Claim:
- AC emplaced into the aquifer as a barrier to intercept PFAAs flux over time.
- Evenly distribute or fracture emplace AC in the subsurface to create a surface for contaminant sorption.

Validity: Vegetable of Uniform distribution unlikely as particle sizes are too large to distribute evenly,

- particles will strain in formation.
- AC has limitations for PFAAs removal, these limitations are exacerbated in-situ.
- PFAAs do not biodegrade. Once AC reaches sorption capacity, PFAAs will leach/bypass in-situ AC barrier.
- Is emplaced AC a secondary source that must be managed in-situ to perpetuity?


Considerable questions/doubt remain for this application.


Product	Particle Size (µm)				
Larger AC	10				
Smaller AC	1-2				
Emulsified vegetable oil	0.1-1				

Sorbent Media Alternatives

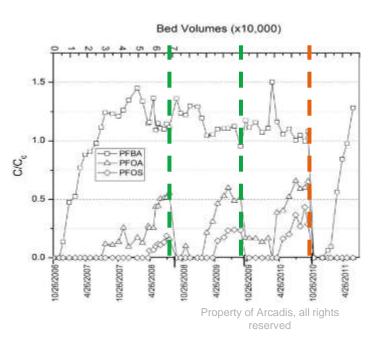
GAC is the current go-to, but alternatives emerging.

GAC can effectively remove PFOS/PFOA from water (>90%).

Benefits:

- Manages low concentrations; low flow rates; compatible geochemistry (low natural organics, low hardness, low PFAS, etc.).
- Easily saleable, rapid deployment.

Limitations:


- 80x less sorptive capacity for PFOS vs. BTEX.
- Effectiveness decreases as PFAA chain length decreases, C4 poor.
- Long term O&M cost.
- Little know about effectiveness at removing precoursors

Deployment:

- Competition with natural organics, precursors, and other contaminants will • effect performance.
- Reactivated GAC can remove PFOS/PFOA.

Dickenson and Higgins, 2016

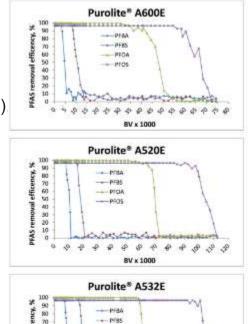
Anion/Non-Ion Exchange (AIX) ARCADIS

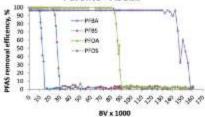
Surface Water Ground Water

Applicability:

AIX can remove PFAAs from water (10-90% effectiveness).

Benefits:


- Engineered resins to focus on long chain versus short chain; low flow rates; compatible geochemistry (low hardness, low salinity, low TDS, low precursors, etc.).
- GAC followed by AIX may be more comprehensive for overall PFAAs removal.
- AIX resins targeted at short chain PFAAs are available.
- Some AIX resins may actually outperform GAC (resin and site specific).


Limitations:

- Resin unit cost may exceed that of GAC.
- No testing against precursors completed
- Regeneration for long chain PFAAs requires methanol in addition to brine.

Deployment:

Geochemical screening and column tests with site-specific water

Property of Arcadis, all rights reserved

Treatment Train Development

9

Applicability

 Pretreatment reducing PFAS concentrations by orders of magnitude prior to GAC

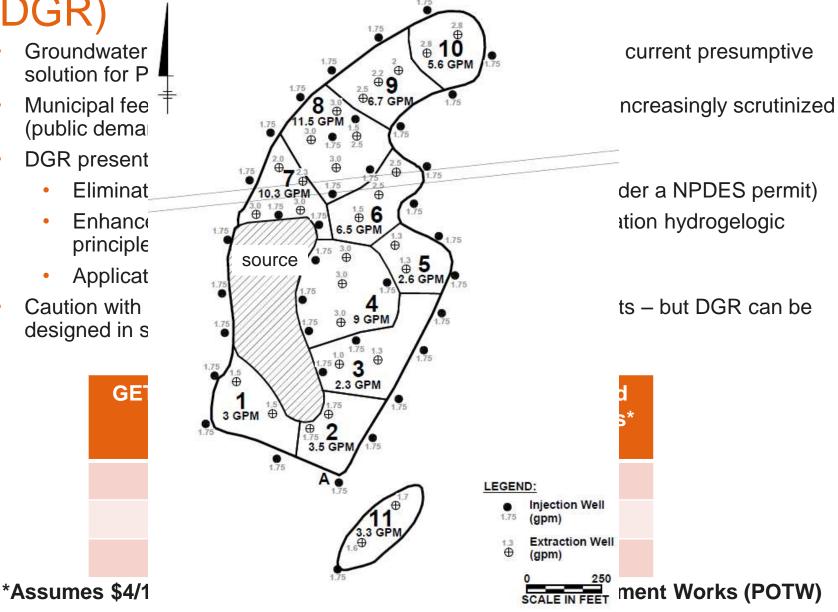
Benefits:

- Expand GAC lifetime and reduce cost associated with frequent GAC change.
- Address co-contaminants, e.g. petroleum hydrocarbons.
- Reduce disposal/destruction cost by creating high concentration waste.

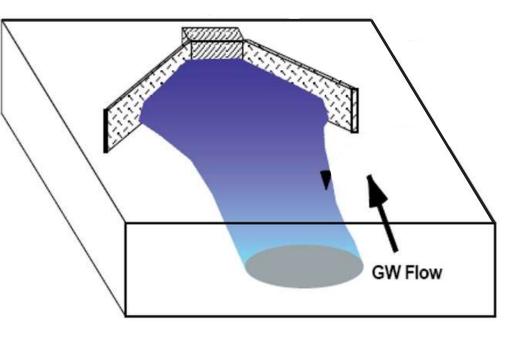
Limitations:

- Still in testing phase.
- May not be stand alone treatment options.
- Economy vs flow.

Deployment:


- High concentration source zones
- Still in development/testing phase.

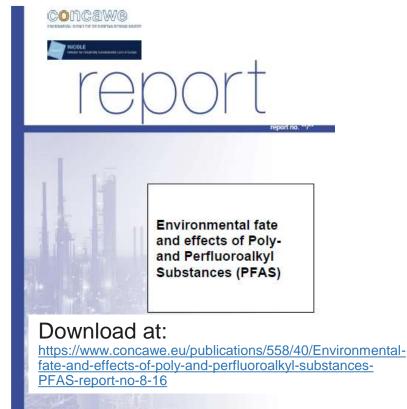
Deployment Variations


Dynamic Groundwater Recirculation

- Groundwater solution for P
- Municipal fee • (public dema
- DGR present ٠
 - Eliminat
 - Enhance ٠ principle
 - Applicat
- Caution with • designed in s

Permeable Reactive Barriers (PRBs)

- Many of the aforementioned treatment technologies may be applied in-situ in a PRB
- A funnel and gate (F&G) PRB is most appropriate as future change out of reactive media will likely be necessary
- Hydraulics can be designed to achieve proper contact conditions (i.e., minimize channeling through GAC).


- PFAS treatment of municipal water and groundwater presents a difficult challenge, and available commercial treatment alternatives represent likely interim measures.
- Few destructive PFAS treatment technologies exist, and no destructive mechanisms have been proven at the field-scale.
- The current state of the practice is physical removal and disposal (incineration or landfill).
- Groundwater extraction and treatment presents a current default solution (with various and developing ex-situ treatment technologies). Site-specific applications may benefit from DGR or PRBs.

Contacts

Allan Horneman Ph.D. New England PFAS Lead Arcadis US <u>Allan.horneman@arcadis.com</u>

Jeff Burdick North America PFAS Lead Arcadis US jeff.burdick@arcadis.com

Ian Ross Ph.D. Global PFAS Lead Arcadis UK ian.ross@arcadis.com

Environmental solance for the European refining industry