TREATMENT AND REMEDIATION PANEL

MICHELLE CRIMI, PH.D.

ASSOCIATE PROFESSOR, INSTITUTE FOR A SUSTAINABLE ENVIRONMENT, CLARKSON UNIVERSITY

MAY 2017

OBJECTIVES:

- Summarize the challenges associated with treatment of PFAS-contaminated soil and groundwater
- Introduce potential viable PFAS remediation approaches

INTRODUCTION

- Perfluorinated Compounds
 - Perfluorinated alkyl acids (PFAAs)
 - PFOA, PFOS
 - PFBA, PFBS
 - PFHxA, PFHxS
 - Intermediates or Precursors
 - N-MeFOSE
 - N-EtFOSE
 - 6:2 FTS
 - Range of properties with chain length and functional group(s) hydrophobicity, electrostatic, reactivity

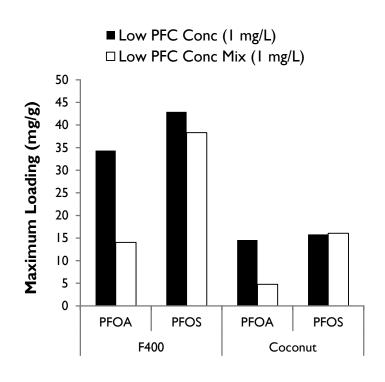
Guidelines (ng/L), EPA 2016				
PFOA	70			
PFOS	70			

INTRODUCTION

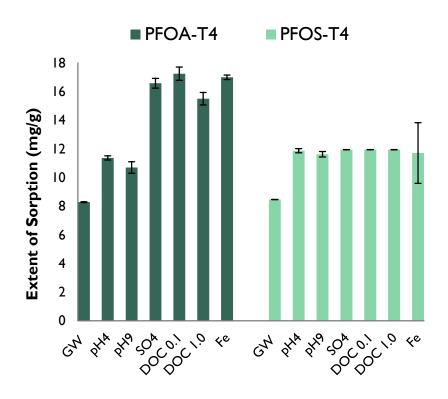
	Formula	Vapor Pressure	Aqueous Solubility	Log K _{oc}	Degradation
PFOA	$C_8HF_{15}O_2$	0.1 kPa (20°C) 10 mm Hg (25°C)	4.1 g/L (22°C) 9.5 g/L (25°C)	2.06	Stable
PFOS	$C_8F_{17}SO_3^-$	3.31 x 10 ⁴ Pa at 20°C	570 mg/L	2.57	Stable
PFHxS	$C_6F_{13}SO_3$	0.61Pa (25°C) ^{ES}	$6.2~\mathrm{mg/L^{ES}}$ $22~\mathrm{mg/L^{ES}}$	3.5 ^{ES}	Stable
PFBS	$C_4F_9SO_3$	0.29 mm Hg at 20°C	8900 mg/L ^{ES} 344mg/L ^{ES}	2.2 ^{ES} 1.9 ^{ES}	Stable
6:2 FTS	F(CF ₂) ₆ CH ₂ CH ₂ SO ₃	0.115Pa(25°C) ^{ES} 0.00086 mm Hg (25°C) ^{ES}	11 mg/L ^{ES} 2mg/L ^{ES}	4.0 ^{ES}	Biodegradable under specific conditions

REMEDIATION OPTIONS

- Excavation → Incineration
 - Expensive
 - Contaminants must be treated off site
- Immobilization/Stabilization
- Filtration
 - Nanofiltration
 - Reverse Osmosis
- Sorption
 - Granular Activated Carbon (GAC)
 - Carbon nanotubes
 - Biomaterials


- Ion Exchange
 - Resins
 - Mineral materials (e.g., zeolites)
 - Polymers
- Precipitation/Flocculation/Coagulation
- Oxidation/Reduction
 - Chemical oxidation
 - Electrochemical, sonochemical, and photochemical
 - Plasma
 - Customized reductants

TREATMENT
TRAINS and
COMBINED
REMEDIES!


SORPTION BY GAC

SORPTION – GAC

■ PFOS-T4 ■ PFOA-T4 18 16 Extent of Sorption(mg/g) 14 12 10 8 No cont. Ethanol TCE TCE Kerosene No cont. Kerosene

Carbon and PFC Type

Sorption under site-specific conditions...

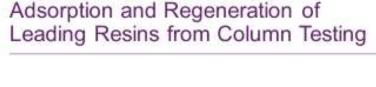
ION EXCHANGE

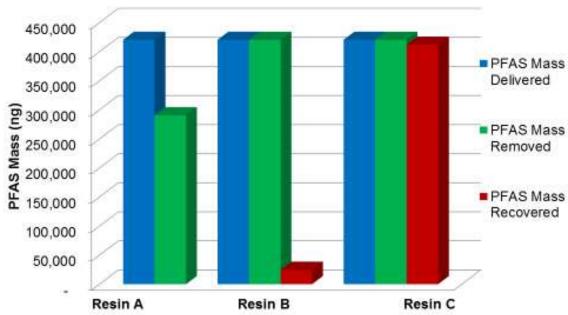
Sustainable Removal of Poly- and Perfluorinated Alkyl Substances (PFAS) from Groundwater Using Synthetic Media

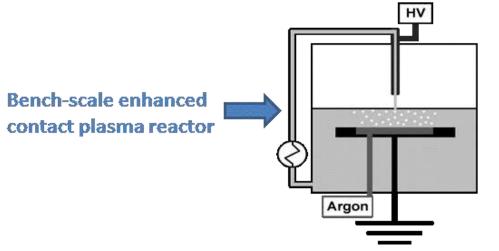
Nathan Hagelin, Amec Foster Wheeler; Steve Woodard, ECT

Media Selection

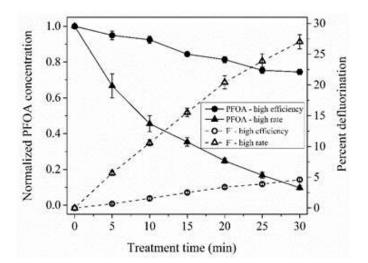
- Synthetic media (resins) removes various contaminants from liquids, vapor or atmospheric streams
- Isotherm testing to identify potentially effective media
- Potential for indefinite reuse via regeneration

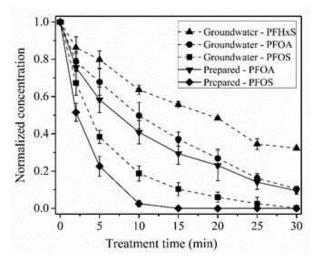






REDOX MANIPULATION


- Sonolytic
- Electrochemical
- Chemical Oxidation and Reduction
- Plasma
- Combinations...


Plasma-based water treatment: Efficient transformation of perfluoroalkyl substances (PFASs) in prepared solutions and contaminated groundwater

Plasma produces aqueous electrons and H radicals which are capable of chemically degrading PFASs

G. R. Stratton, F. Dai, C. L. Bellona, T. M. Holsen, E. R. V. Dickenson and S. Mededovic Thagard, "Plasma-based water treatment: Demonstration of efficient perfluorooctanoic acid (PFOA) degradation and identification of key reactants" Environmental Science & Technology, 2016, accepted.

Major byproducts: fluoride ions, fluorinated gases and shorter-chain PFAAs

Courtesy of Selma Mededovic Thagard, Clarkson University

CHALLENGES AND LIMITATIONS

- Mixtures, precursors, co-contaminants
- Managing materials
 - Sorption
 - Sludge
- Incomplete mineralization
- Energy intensity
- Technical challenges to in situ treatment
- Limited field-scale examples

SURVEY!

- OBJECTIVE: Improve understanding of the similarities and gaps between state of the science and the state of the practice of managing PFAS sites
 - goo.gl/zakRX3