Treatability Testing for In-Situ Chemical Oxidation

Jerry Cresap, PE Regional Engineering Manager

knowledge. innovation. results.

Overview

- Definition of Treatability Testing
- Benefits and Limitations
- Types of Treatability Tests
- Case Study
- Summary

"The strongest arguments prove nothing so long as the conclusions are not verified by experience."

- Roger Bacon

What is Treatability Testing?

- Measurement of Treatment Under "Ideal" Conditions
- Controlled Tests Performed on Water and Soil Samples
- Proof of Concept
- Establish Parameters for Pilot / Full-Scale ISCO
- Common Objectives
 - > Determine reactivity of soil
 - > Select the optimum chemistry
 - Evaluate potential adverse reactions
 - > Develop cost estimate

Will target compounds degrade to desired end products under site conditions.

Benefits of Treatability Testing

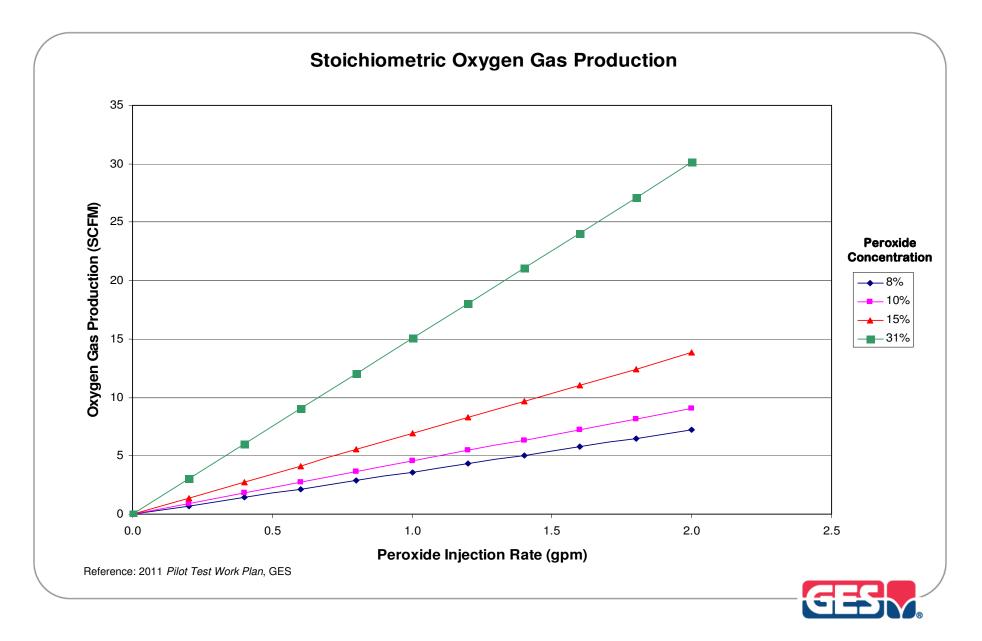
- Generates Site-Specific Data
- Allows Optimization Prior to Full-Scale Implementation
 - > Refine chemistry
 - > Incorporate efficiencies
 - > Cost savings potential
- Enhances Pilot Testing / Full-Scale Implementation
 - > Expected results guide next phase of work
 - > Simplifies evaluation of field scale results

Limitations of Treatability Testing

- Linear Scale-Up Limitations
 - > Difficult to simulate heterogeneity in test column
 - > Small sample volume compared to site
 - > Well-mixed static system
- Contact and Mixing
 - May favorably bias results
 - > Not possible to evaluate delivery process
- Pilot Study Required (usually)

Types of Treatability Tests

- Laboratory Tests
 - > Simple, inexpensive tests
 - > Incorporate into RI
 - > SOD, peroxide reactivity
- Bench-Scale Study
 - > Proof of concept
 - > Basis of design
 - > Scale-up for pilot test
- Pilot Testing
 - > Discussed in next session
 - > Provides full-scale design parameters
 - > Requires extensive monitoring


Stoichiometric Evaluation

$15\mathrm{Na_2S_2O_8} + \underset{benzene}{\mathrm{C_6H_6}} + 12\mathrm{H_2O} \rightarrow 6\mathrm{CO_2} + 30\mathrm{SO_4^{2-}} + 30\mathrm{Na^+} + 30\mathrm{H^+}$	Eqn. 1
$18Na_2S_2O_8 + C_7H_8 + 14H_2O \rightarrow 6CO_2 + 36SO_4^{2-} + 36Na^+ + 36H^+$	Eqn. 2
$\begin{array}{l} 21\mathrm{Na_2S_2O_8} + \mathrm{C_8H_{10}} + 16\mathrm{H_2O} \rightarrow 6\mathrm{CO_2} + 42\mathrm{SO_4}^{2\text{-}} + 42\mathrm{Na^+} + 42\mathrm{H^+} \\ & \text{ethylbensene or xylenes} \end{array}$	Eqn. 3
$25Na_2S_2O_8 + C_8H_{18} + 16H_2O \rightarrow 8CO_2 + 50SO_4^{2-} + 50Na^+ + 50H^+$	Eqn. 4
$49\text{Na}_2\text{S}_2\text{O}_8 + \text{C}_{16}\text{H}_{34} + 32\text{H}_2\text{O} \rightarrow 16\text{CO}_2 + 98\text{SO}_4^{2^-} + 98\text{Na}^+ + 98\text{H}^+$ <i>n-hexadecane</i>	Eqn. 5

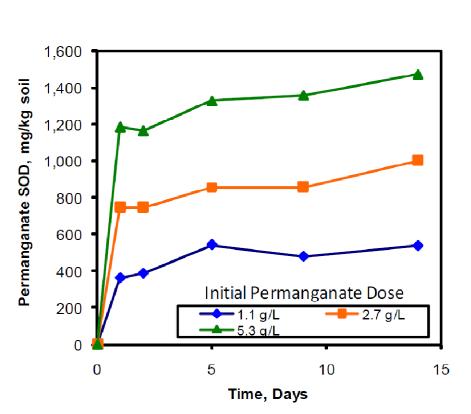
- Starting Point for All Treatability Tests
- Establish Baseline for Comparison
- Facilitates Oxidizer Selection
 - > Mass/volume requirements
 - > Reaction kinetics
 - > Catalyst requirements

Gas Evolution and Generation

Soil Oxidant Demand

- Measure of Oxidant Depletion Over Time
 - > Grams of oxidant per kilogram of soil (g/kg)
 - > Range: 0.1 to 20 g/kg
- Standard Methods
 - Permanganate: USEPA Method PSOD and ASTM D7262-10
 - > Other oxidants: Varies
- Variables Soil Related
 - > Natural organic matter
 - > Reduced solid species
 - > Soil structure / mineralogy
- Variables Process Related
 - > Oxidant
 - > Oxidant concentration
 - > Time of measurement

Oxidant Demand – Primary Design Factor

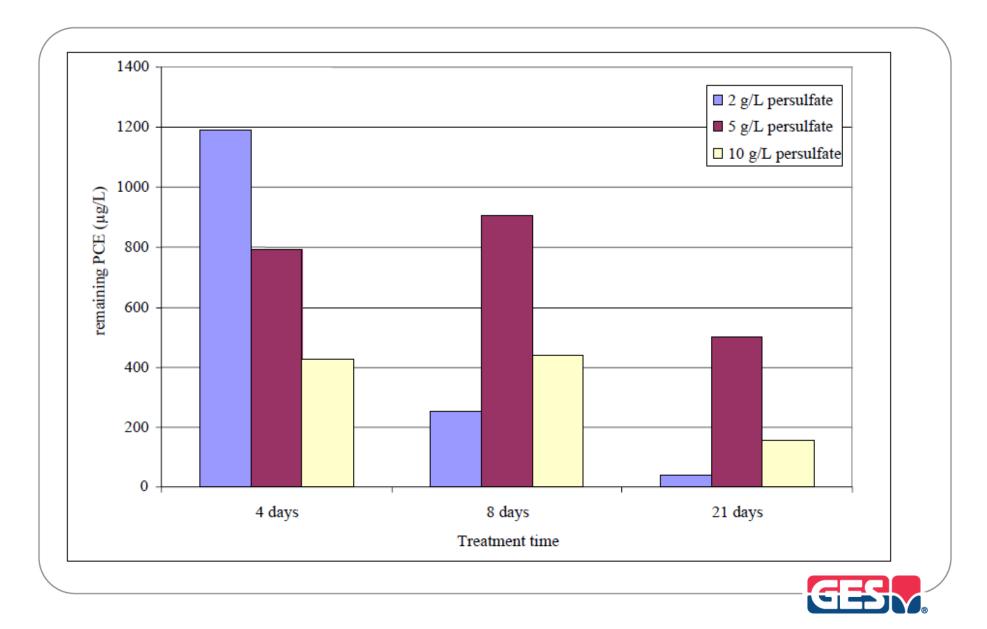

- Soil Matrix is Generally Dominant
 - > 2 to 3 orders of magnitude
 - Groundwater constituents relatively unimportant
- Matrix Demand May Exceed Contaminant Demand
- Interpreting the Results
 - > Cost of full-scale implementation
 - Evaluate oxidant mass versus pore volume
 - > SOD ignores relative reaction rates

Soil Oxidant Demand vs. Dose

- Initial Oxidizer Concentration
- Activator / Catalyst
- Oxidant Dependent
- SOD Measurement Time
- Other Factors

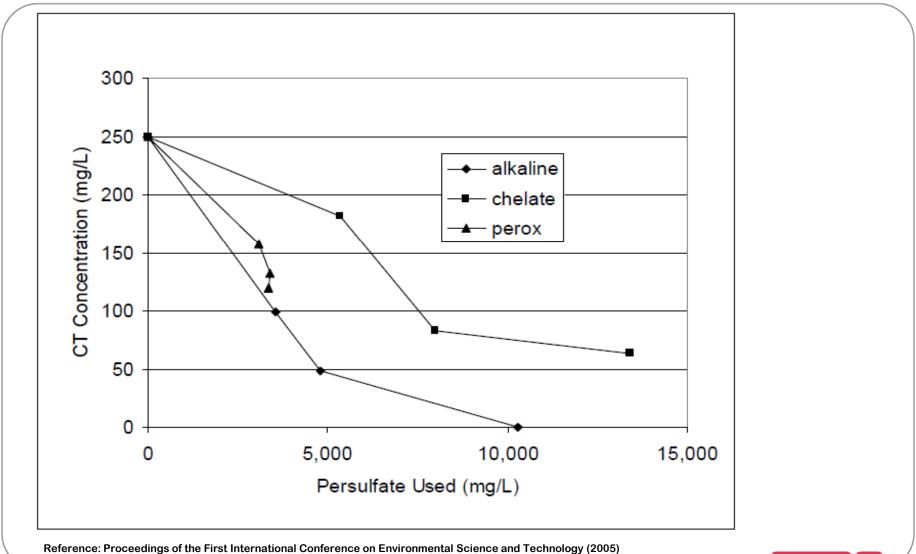
Reference: 2010 PRIMA Environmental, Inc.

Bench-scale Testing


• Establish Basis of Design

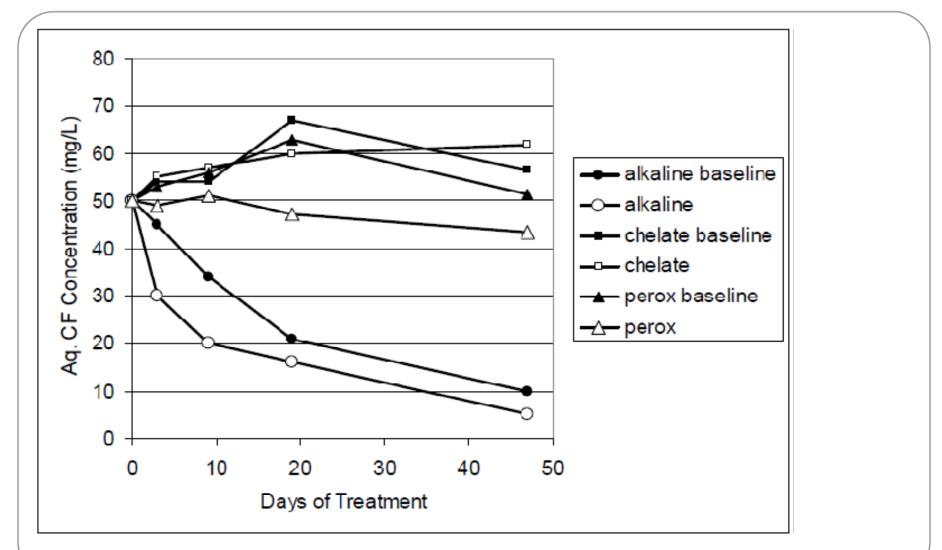
- > Oxidizer selection
- > Dose optimization
- > Oxidant/stabilizer concentration
- > Catalyst selection
- > Secondary considerations
- Address Concerns
 - > Contaminant desorption
 - > Metals mobilization
 - > Cr(VI) formation
 - > pH shift
 - > By-product formation

Dose Optimization



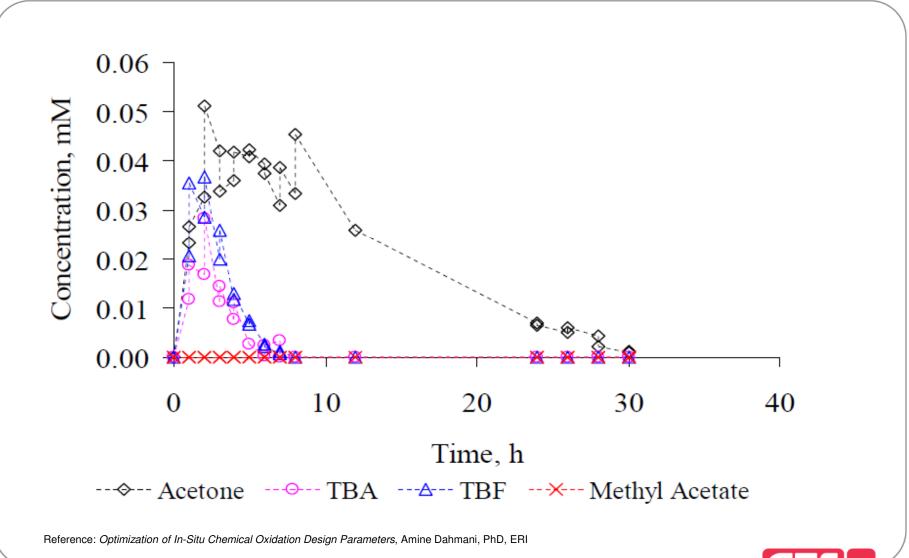
Metals Mobilization

- Some metals can be mobilized by oxidizing conditions
- Redox sensitive metals must be considered
 > Cr ³⁺ → Cr ⁶⁺
- Bench-Scale and Pilot Test Important
 - > Directly measure constituent concentrations
 - > Evaluate "buffering" capacity of site



Catalyst Optimization

GES

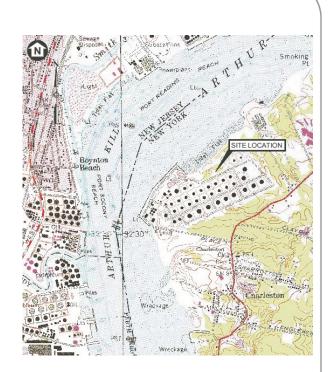

Activation Method Optimization

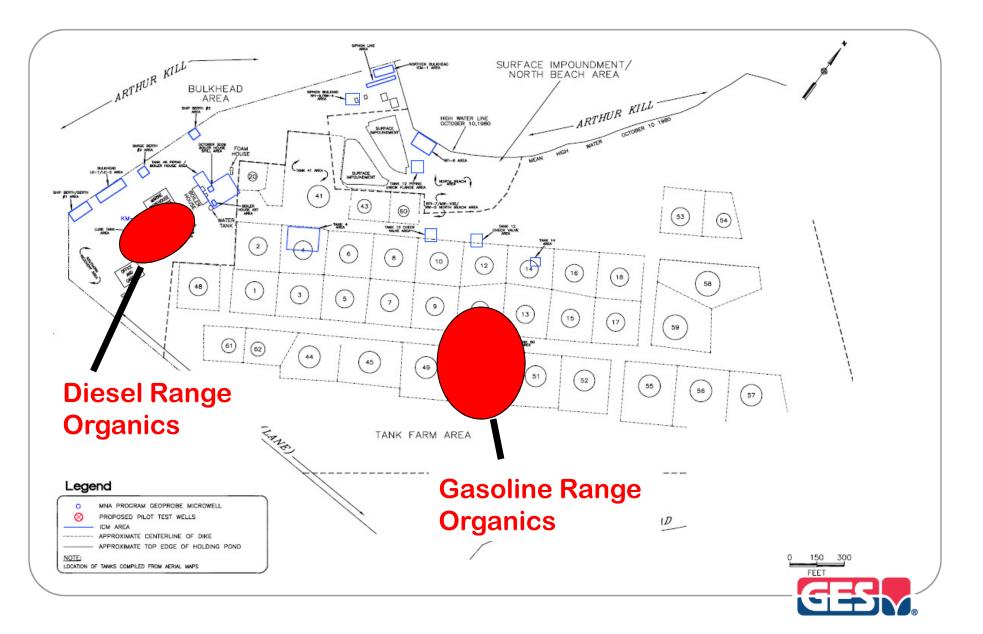
Reference: Proceedings of the First International Conference on Environmental Science and Technology (2005)

Intermediates in MTBE-Persulfate Reaction

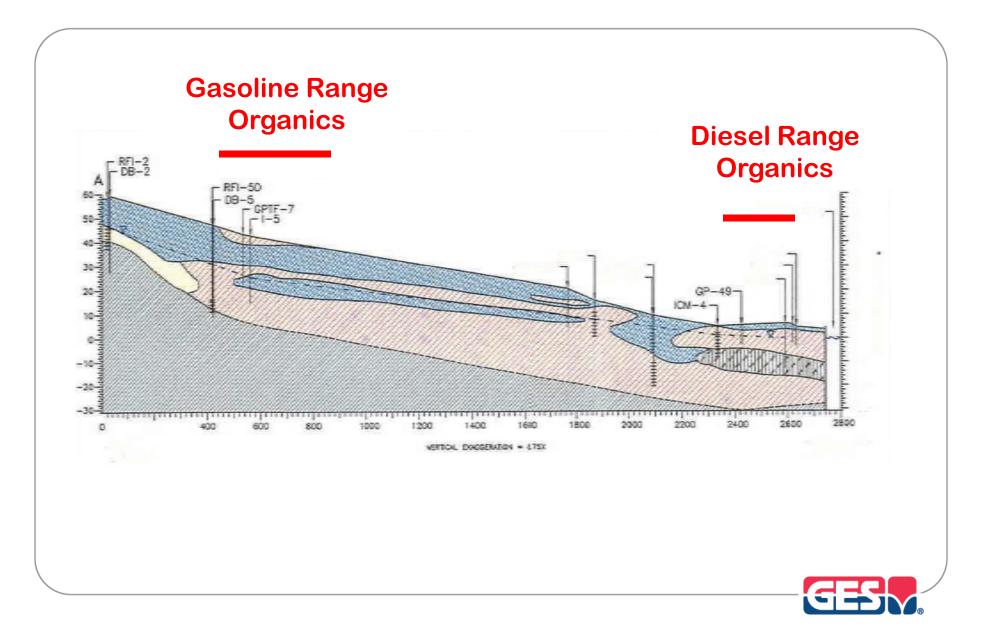
Pilot Tests

Pilot tests are performed on targeted area(s) of the site


- Common Objectives
 - > Radius of influence
 - > Rate of application
 - > Field-scale inefficiencies
 - > Field oxidant volume estimates
 - > Evaluate injection design
- Cost Estimate for Full-Scale Implementation
- Another Opportunity to Say "No"


Case Study: Bulk Storage Facility

- Background
 - > Petroleum bulk storage facility
 - > 125 million gallon storage capacity
 - > 200 acres
 - > COCs gasoline, diesel, heavy fuel oil
- Geology
 - > Heterogeneous deposits
 - > Sand, silt, clay, some gravel
 - Clay unit underlies superficial water bearing unit
- Hydrogeology
 - > Aquifer: 5 35 feet thick
 - > DTW: 1 29 feet bgs
 - > Hydraulic gradient: 0.04 ft/ft to 0.005 ft/ft
 - > Hydraulic conductivity: 0.003 ft/min to 0.024 ft/min



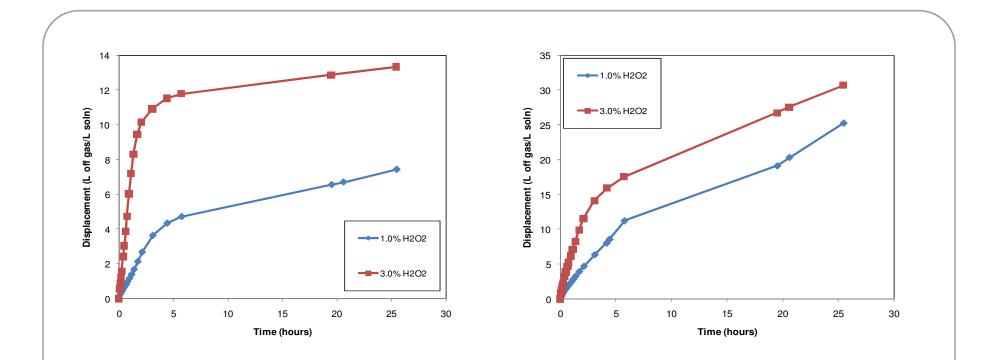
Case Study: ISCO Target Areas

Case Study: Geologic Cross-Section

Case Study: Treatability Study Objectives

Process Variable Evaluation/Optimization

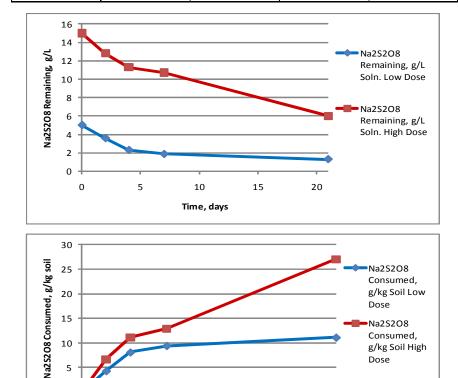
- Chemistry Optimization
- Oxidant Stability / Gas Evolution
- Soil Oxidant Demand
- Soil Buffering Capacity
- Optimize Reaction Chemistry
 - > Oxidizer Dose
 - > Oxidant Determination
- Address Concerns
 - > pH reduction (persulfate)
 - > Chromium VI



Case Study: Chemistry Optimization

- Sodium Persulfate / Hydrogen Peroxide Activation
 - > Activate with H₂O₂ / Persulfate
 - > Activate with EDTA-Iron
- Hydrogen Peroxide
 - > EDTA-Iron
 - > Stability of peroxide
- Catalyst Evaluation
 - > EDTA only
 - > Utilize "native" iron

Case Study: Oxidant Stability / Gas Evolution



Hydrogen Peroxide Longevity Test

Case Study: SOD vs. Concentration

Time, Days	Na ₂ S ₂ O ₈ Remaining, g/L Soln.		Na ₂ S ₂ O ₈ Consumed, g/kg Soil	
	Low Dose	High Dose	Low Dose	High Dose
0	5	15	0	0
2	3.6	13	4.3	6.6
4	2.3	11	8.1	11
7	1.9	11	9.4	13
21	1.3	6.0	11	27

0

0

5

10

Time, days

15

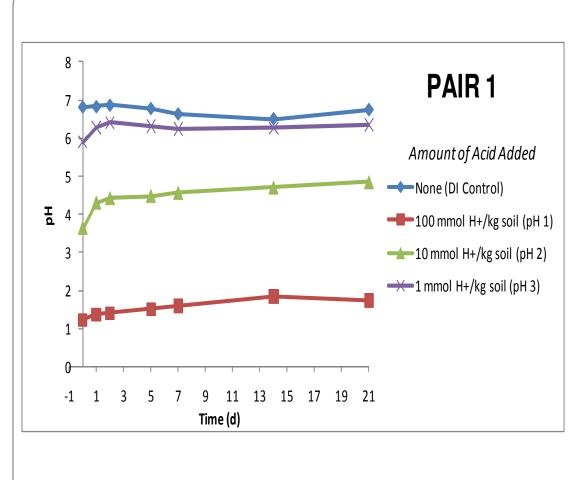
20

Dose Optimization

•Higher Dose – Higher SOD

Low Dose

•Concentration: 5 g/L


•SOD: 11 g Na₂S₂O₈/kg

High Dose

- •Concentration: 15 g/L
- •SOD: 27 g Na₂S₂O₈/kg

Case Study: Soil Buffering Capacity

•Assess pH drop following persulfate injection

- •Mild buffering capacity of soil
- •May require pH adjustment following persulfate injection
- •All samples similar results

Case Study: Test Multiple Locations

- Oxidant/Catalyst Evaluation
- •Multiple Samples per AOC
- •Very Different Results

Pair #1 – GRO Optimized•peroxide / persulfate – 70%

•EDTA-Fe / peroxide – 68%

Pair #3 – GRO Optimized

•EDTA-Fe / persulfate - 100%

•EDTA-Fe / peroxide - 80%

Case Study: Optimization Results

• EDTA-Iron Catalyst

- > EDTA solution = 1,100 mg/L
- > Chelated iron concentration = 150 mg/L
- > EDTA : Iron = 10:1
- Persulfate Peroxide
 - > H2O2 : Persulfate = 5 : 1
- Persulfate EDTA-Iron
 - > EDTA : Persulfate = 1 : 4

Summary

- Treatability Testing is Valuable
 - > Process optimization
 - > Cost information
- Decision Making Enhanced
 - > Site-specific data
 - > Go / No-go earlier in design process
- Lessons Learned
 - > Optimize chemistry
 - > Develop contingencies for concerns
 - > Even "Simple Sites" benefit

Treatability Testing for In-Situ Chemical Oxidation

Jerry Cresap, PE Regional Engineering Manager

knowledge. innovation. results.

