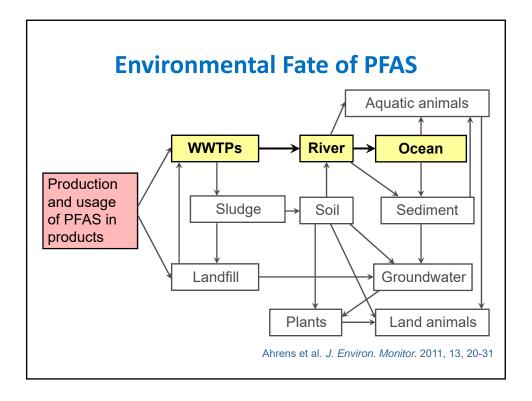

PFAS: Assessing Laboratory Data Quality


NEWMOA Webinar April 4, 2019

Nancy C. Rothman, Ph.D. New Environmental Horizons, Inc.

34 Pheasant Run Drive, Skillman, NJ 08558
Phone: 908-874-5686
email: nrothman_neh@comcast.net
web site: www.neh-inc.com

Analysis of PFAS

USEPA Method 537.1 (version 1.0, 2018)

- Only applicable to Drinking Water samples
- No Recovery Correction
- Analyte list limited 18 PFAS (14 PFAS required by Method 537 + 4 added compounds)
- New DW method (Summer 2019) 25 PFAS includes 11 "short chain" compounds

ASTM D7979-17 & **ASTM D7968 - 17a** (2017)

- Non-Drinking water Aqueous & Soils
- No Recovery Correction
- 25 PFAS

Analysis of PFAS

SW-846 Method 8327 (Summer 2019)

- Direct Injection
- Non-Drinking Water Aqueous
- 24 PFAS
- No Recovery Correction

SW-846 Method 8328 (late 2019)

- Solid Phase Extraction/Isotope Dilution (SPE-ID)
- Non-Drinking Water Aqueous & Solids
- 24+ PFAS
- Recovery Correction

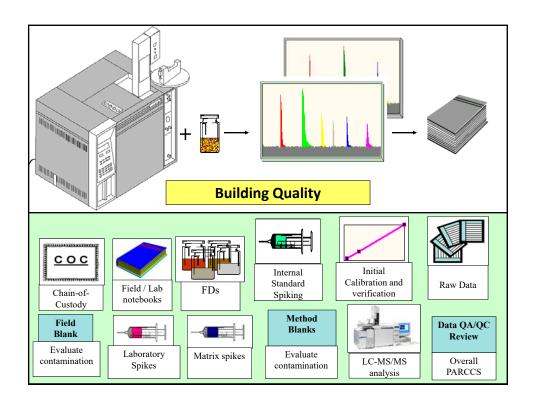
Lab-Specific Methods

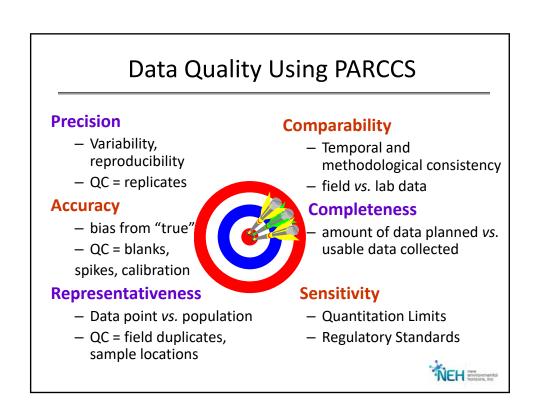
- Modifications to the above methods
- Vary lab-to-lab

Analysis of PFAS

Total Oxidizable Precursors (TOP)

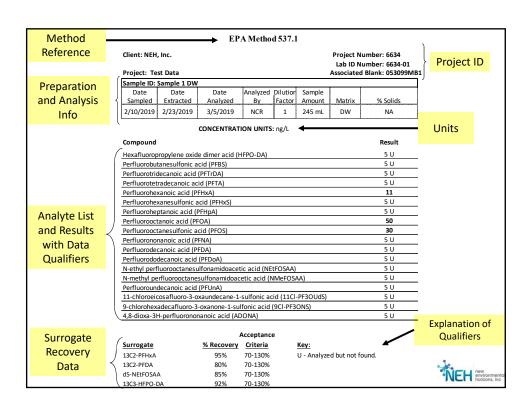
- Comparison of LCS-MS/MS results for sample pre- and post-oxidation
- Useful for evaluating Precursor potential may be biased low


Proton Induced Gamma-ray Emission (PIGE)


Non-destructive technique for Total Fluorine

Adsorbable Organic Fluorine /Combustible Ion Chromatography (AOF/CIC)

• Destructive technique for Total Fluorine



Types of Data Reports

- 1. Summary Data Package Recommended
 - Narrative explaining Method of Analysis and any issues with sample receipt and analysis
 - Sample Results (including FB and FD) + Surrogate recoveries
 - QC results (MB, LCS, MS, & MSD or FD)
 - Executed Chain-of-Custody
- 2. Full Deliverable all of above + raw data
- 3. Result Forms/Tables only Not Recommended

Specific Laboratory QA/QC For PFAS

- Sample preservation
- Sample Holding Times / Analytical Batches (≤ 20 samples)
- QC Samples required for each Analytical Batch:
 - Laboratory Reagent Blank (LRB) / Method Blank (MB)
 - Laboratory Fortified Blank (LFB) / Laboratory Control Sample (LCS)
 - Laboratory Fortified Sample Matrix (LFSM) / Matrix Spike (MS)
 - Laboratory Fortified Matrix Sample Duplicate (LFSMD) or Field Duplicate (FD)
- Surrogates added to all samples & QC prior to extraction
- Internal Standards added to all extracts prior to analysis

Holding Time

Check sample data sheet for HT acceptance

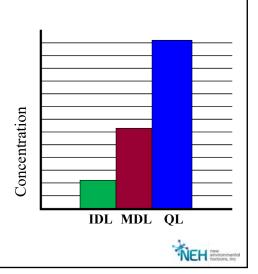
Date	Date	Date	
Sampled	Extracted	Analyzed	
2/20/19	2/23/19	3/5/19	
1		<u> </u>	

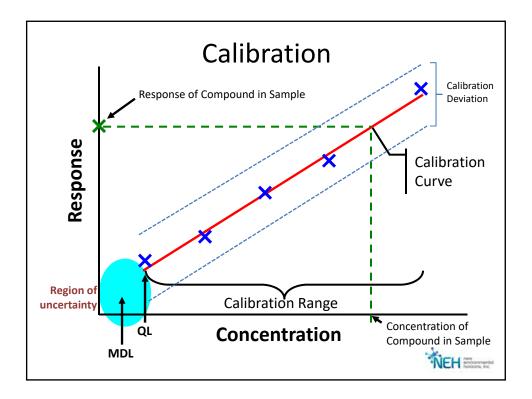
Date extracted - Date sampled ≤
Preparation Holding Time

Method 537.1 preparation HT = 14 days;
2/23/19 - 2/20/19 = 3 days:
HT OK

Date analyzed - Date extracted ≤
Analytical Holding Time
Method 537.1 analytical HT = 28 days;
3/5/19 - 2/23/19 = 11 days:
HT OK

Preservation & Holding Time


- Method 537.1 requires addition of Trizma
 - Acts as a buffer and removes free-chlorine from Drinking Water samples
- Samples shipped cold (< 10 °C) to lab
- If Preservation not correct or Holding Time (HT) exceeded – potential for loss of PFAS content and false negative results


If Preservation and/or HT a problem, all results are considered uncertain with possible low bias

Detection and Reporting Limits

- Instrument Detection
 Limit (IDL) is the "Best" the instrument can detect
- Method Detection Limit
 (MDL or LOD) is the "Best"
 the instrument can detect by
 the method statistically
- Quantitation Limit
 (QL/RL/LOQ) is the "Practical"
 level of accurate quantitation –
 Must be supported by
 calibration curve and should
 be < Project Level of Concern

Recovery Surrogates vs. Isotope Dilution Surrogates

Similarities:

Added directly to the sample prior to preparation and analysis

Differences:

Recovery Surrogates

- Surrogates used to *infer* accuracy of preparation and analysis
- Internal Standards spiked prior to analysis to quantitate surrogates and target compounds

Isotope Dilution Surrogates

- Labeled Isotopes of most target compound (e.g., 13C4-PFOA, 13C4-PFOS) used for quantitation
- Loss in Isotope mirrors loss of Unlabeled compound = data are Recovery-Corrected

Recovery Surrogates vs. Isotope Dilution Surrogates

Non-Isotope Dilution Methods

Concentration

Concentration

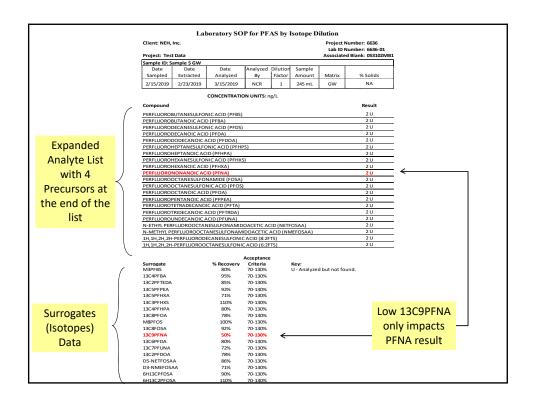
Compound Response | Recovery Surrogate | Rec. Surrogate Response | Recovery Surrogate | Rec. Surrogate Response | Rec. Surrogate Rec. Surrogat

Compound = Target PFAS

Rec. Surrogate = Recovery Surrogate

Isotope Dilution Methods

Compound Concentration = Compound Response ID Surrogate Response Concentration ID Surrogate Response ID Surrogate Response


Compound = Target PFAS ID Surrogate = Isotope Dilution

Surrogate Recovery Problems

- Surrogate recovery below criteria: potential low bias in data
 - Due to lab error or matrix effects
- Surrogate recovery above criteria: potential high bias
 Due to interferences or instrument issues
- Non-Isotope Dilution Analysis = Detected and nondetected results may be uncertain
- Isotope Dilution Analysis = Only compound(s)
 associated with Isotope affected. Uncertain whether
 data are biased at all since results are recovery
 corrected

Blank Samples

- Method Blank (MB) lab-generated
 - Evaluates whether contamination may have been introduced by the laboratory
 - Associated with all samples in the Analytical Batch
- Field Blank (FB) / Equipment Blank (EB)
 - Evaluates whether contamination may have been introduced during sample collection and transport
 - Associated with specific field sample results

Compare Blank results to Sample results to evaluate potential lab/field contamination that may cause high bias or false positives in field sample data

Laboratory Control Sample (LCS)

- LCS = Method Blank that is spiked with all the PFAS compounds of interest
- LCS Recoveries = within acceptance criteria as specified in Method or project QAPP
- LCS recovery outside criteria = impact for affected compound for all samples in the Analytical Batch

Compare LCS results to Method / QAPP acceptance criteria to evaluate potential accuracy / bias in associated Sample data; may qualify results

Example LCS Evaluation

Compound	%Recovery	Acceptance Criteria	Issue?
PFOA	75%	70-130%	No
PFOS	80%	70-130%	No
PFNA	60%	70-130%	PFNA in all associated samples may be biased low
FOSA	145%	70-130%	Non-detects acceptable but detected results may be biased high

Matrix Spike Samples (MS/MSD)

- MS/MSD = Sample aliquots spiked with all PFAS compounds of interest
- MS/MSD Recoveries = within acceptance criteria as specified in Method or project QAPP
- If MS/MSD recovery outside criteria = impact for affected compound in the unspiked sample
- If MS/MSD RPD outside criteria = results for unspiked sample uncertain

Compare MS/MSD results to Unspiked Sample to evaluate potential accuracy / bias and precision issues in Unspiked Sample data; may qualify results

Example MS/MSD Evaluation

Cpd	Unspiked Sample (ng/L)	MS %Rec	MSD %Rec	RPD	Acceptance Criteria Recovery/RPD	Issue?
PFOA	5 U	75%	80%	6.4%	70-130% / 30%	No
PFOS	5 U	71%	128%	57.3%	70-130% / 30%	Imprecision may indicate result is non-representative and uncertain
PFNA	8	60%	57%	5.1%	70-130% / 30%	PFNA in unspiked sample may be biased low
FOSA	5 U	145%	145%	0%	70-130% / 30%	No Issue – Non-detect for Unspiked sample accurate as reported

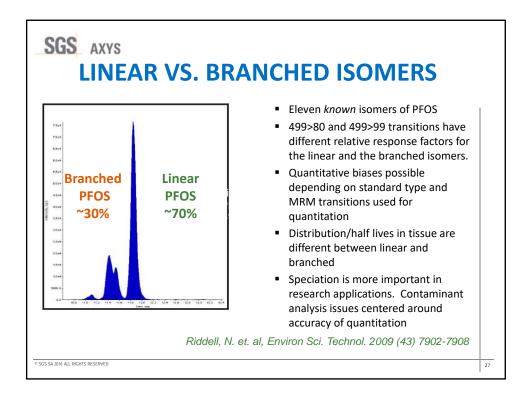
Data Comparability

Precision = variability and reproducibility of results

 Assessed by evaluating the Relative Percent Difference (RPD) between duplicate results or Percent Relative Standard Deviation (RSD) between more than 2 results

$$RPD = \frac{I(Result 1 - Result 2)I}{\frac{(Result 1 + Result 2)}{2}}$$

Compare RPD to Method / QAPP criteria and possibly qualify results due to imprecision



Data Comparability

Factors Affecting Comparability

- Changes in Field Collection Techniques
 Elimination or introduction of PFAS during Sampling
- Not using Isotope Dilution for Recovery Correction of data
 - Sample data may vary by ±30% based on Surrogate recovery acceptance limits of 70-130%
- Degradation of Precursors
 Formation of compounds of concern over time
- Not including Branched Isomers in reporting of data Historic data may not have included branched isomers
- Sensitivity differences in data sets (QLs not the same)

Sampling QA - Representativeness and Precision

- Representativeness of samples to site conditions acceptable?
 - Review MS/MSD and FD precision as quantitative measures of quality – Heterogeneity issues
 - Generally, results may be considered uncertain due to precision QC results but are not rejected

Field Duplicate Comparison

Compound	QL (ng/L)	Sample Result (ng/L)	FD result (ng/L)	RPD	Issue?
PFOA	2	2 U	2 U	NC	No: Both results are non- detect
PFAS	2	11	8	32%	Yes: Both results > 2 x QL and RPD > 30%
PFNA	2	2.2	3.9	56%	Yes: Both results < 2 x QL and RPD > 50%
FOSA	2	9	10	11%	No: Both results > 2 x QL and RPD < 30%

Method 537.1 RPD acceptance: RPD \leq 30% for values > 2x QL and RPD \leq 50% for values < 2x QL

As a conservative approach, the highest of the two values should be associated with PFAS and PFNA for the sampling location

Usability Evaluation Example

Sample	Advisory Level (ng/L)	Result (ng/L)	Surrogate %R	LCS %R	MS/MSD %R/RPD	Issue?
А	70	5 U	High	High	OK	No: Non-detect accurate as reported
В	70	66	OK	OK	%R low	Yes: result may be biased low and really >70 ng/L
С	70	63	Low	High	OK	Maybe: conflicting bias
D	70	110	Low	OK	High	No: conflicting bias but 110 >70 ng/L

Must evaluate the cumulative effect of <u>all</u> Quality Control to determine Usability and whether an Action Level has been exceeded

Conclusion

- Overall Quality depends on cumulative Quality from sampling through analysis
- Specifically for PFAS Field Collection & Analytical Method differences can introduce uncertainty
- Guidelines for Evaluating Quality
 - Data Review and Validation Guidelines for Perfluoroalkyl Substances (PFASs) Analyzed by Method 537, EPA 910-R-18-001 (November 2018)
 - Table B-15 of QSM 5.2 Consolidated Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.2 (DOD/DOE, 2018)

http://www.denix.osd.mil/edqw/documents/documents/manuals/qsm-version-5-2-final-updated/

ITRC PFAS Resource

- Seven Fact Sheets (available now) and Technical Guidance Document (late 2019)
 - History and Use
 - Nomenclature Overview and Physicochemical Properties
 - Regulations, Guidance, and Advisories
 - Environmental Fate and Transport
 - Site Characterization Considerations, Sampling Techniques and Laboratory Analytical Methods
 - Remediation Technologies and Methods
 - Aqueous Film Forming Foam

https://pfas-1.itrcweb.org/

