Landfills & Greenhouse gas emissions

Breathing (biogenic) vs. Fossil fuel combustion (anthropogenic)...

- Average person exhales 2.3#/pp/day CO₂
- 27% of that is carbon = 0.621#
- Everyone exhales = 2.94B tons/year
- Fossil fuel combustion = 34.7B tons/year

C55H104O	$\frac{\text{INHALED}}{6 + 78O_2} - \frac{1}{2}$	► $55CO_2$ +	+ 52 H ₂ O
FAT	OXYGEN	CARBON	WATER

Where do trees get most of their mass?

Background

EPA - MSW landfilling (top down)

EPA landfilled degradable organics (top down)

Food waste – State waste characterization studies (bottom up)

- California 2018 14.9%, 2014 18.1%, 2008 16.5%
- Connecticut 2015 22.3%
- Delaware 2016 21.1%
- Minnesota 2013 17.8%
- Missouri 2016/2017 15.0%
- Vermont 2017 19.3%
- Washington 2015/2016 17.0%
- Wisconsin 2020/2021 14.1%

Landfill gas production

In the beginning...

Regulating landfill gas

- EPA New Source Performance Standards Subpart WWW
 - First promulgated in 1996
 - Requires landfill gas collection & control when >50 Mg/year in NMOC generated
 - NMOC = *non-methane* organic compounds!
- EPA NSPS XXX
 - Now required >34Mg/yr
 - Anticipated to reduce 290,000 Mg/yr methane (24 MMT/yr CO2e) (about 25% of current MSW landfill methane emissions)
- SCOTUS 2007 decision in Massachusetts v. EPA established GHGs as air pollutants; upheld in 2012

GHG Inventory

EPA greenhouse gas reporting program & inventory

- GHG reporting program
 - Site specific
- GHG inventory
 - Uses reporting program data
 - + Scale up factor to account for nonreporting landfills

Landfill gas emissions

1990-2019

- Population up 30%
- Landfilling tonnage flat
- Landfill gas emissions down 35%

How landfill emissions are determined...

Landfills are area sources...

Direct measurement of fugitive landfill gas emissions is not available

Landfill emissions are estimated

Top down:

. . . .

Bottom up:

Emissions = $\left[\left(G_{\text{CH 4}} - \sum_{n=1}^{N} R_n\right) \times (1 - \text{OX}) + \sum_{n=1}^{N} \left\{R_n \times \left(1 - \left(\text{DE}_n \times f_{\text{Dest},n}\right)\right)\right\}\right]$ (Eq. HH-6)

Emissions -
$$\left[\left(\frac{1}{CE}\left\{\sum_{n=1}^{N}\left[\frac{R_{n}}{f_{\text{Rec},n}}\right]\right\} - \sum_{n=1}^{N}R_{n}\right) \times (1 - OX) + \sum_{n=1}^{N}\left\{R_{n} \times \left(1 - \left(DE_{n} \times f_{\text{Dest},n}\right)\right)\right\}\right]$$
 (Eq. HH-8)

Generation

Generation is predominantly a function of:

- quantity of waste
- percentage of waste with degradable carbon
- climate (wet or dry)
- decay rate (k-value)

k-value varies. For example:

- low as 0.02 (wood in an arid region)
 - ~34 years for half of the carbon to decay
- high as 0.185 (food or sewage sludge in a wet region)
 - ~4 years for half the carbon to decay

Bottom-up method

- Collection efficiency based on weighted average of areas with:
 - no active collection 0%
 - daily 60%
 - intermediate 75%
 - final cover 95%
- The more you collect, the more you emit???
- Methodology does not reduce emissions for "good behavior"

For example:

Assume collection efficiency weighted average = 75% Annual recovery = 65,000 metric tons CO2e Emissions ~19,500 metric tons CO2e

If cover is unchanged but recovery is increased to 70,000 metric tons CO2e, emissions would increase to ~21,000 metric tons CO2e

Methane oxidation

- EPA allowable:
 - 0% geomembrane cover & <12" cover for >50% of area
 - 10% Default or:
 - <50% areas with interim/final cover
 - methane flux >70 g/m2/day
 - 25% >50% cover + 10-70 g/m2/d flux
 - 35% >50% cover + <10 g/m2/d flux
- Field measurements average 30-40%

Super Emitters?

- Flyovers of landfills provide snapshot measurement which are extrapolated
- NASA's Jet Propulsion Laboratory conducting flyovers
- Satellites anticipated Carbon Mapper 2023 launch
- States: Maryland, Pennsylvania, California, Others?

California Methane Survey

- Point source plumes observed at 32 out of 436 landfills
 - Construction of new wells
 - Gaps in intermediate cover
 - Leaking gas wells
- Undetected sources "suggest...[that] those facilities emit methane as area sources"

Landfill gas utilization

Landfill gas utilization benefits

- Reduce air pollution through avoided use of non-renewable (not limited to GHGs, but also SOx, NOx, & HAPs)
- GHG benefits for typical 3 MW project (EPA):
 - Carbon sequestered > 196k acres of forests in one year
 - CO2 > 830 railcars worth of coal burned
 - CO2 > 17 M gallons of gasoline
 - Energy benefit = powering 1900 homes

LFG utilization

- 548 operational projects
- 483 candidate landfills

Sequestration

GHG Inventory – Carbon Sequestration (CO₂e)

Carbon Pool	1990	2005	2015	2016	2017	2018	2019
Forest Ecosystem	(663.8)	(555.5)	(582.7)	(629.5)	(564.0)	(599.8)	(583.3)
Aboveground Biomass	(456.4)	(401.3)	(414.2)	(421.3)	(395.1)	(402.4)	(394.0)
Belowground Biomass	(103.7)	(92.0)	(92.6)	(95.0)	(89.2)	(90.9)	(89.2)
Dead Wood	(97.3)	(93.5)	(98.7)	(105.1)	(97.1)	(101.7)	(99.3)
Litter	(8.1)	32.2	30.5	(3.2)	0.2	(2.3)	(0.5)
Soil (Mineral)	1.5	(1.5)	(7.3)	(6.8)	14.3	(4.5)	(2.4)
Soil (Organic)	(0.6)	(0.2)	(1.1)	1.2	2.1	1.2	1.2
Drained Organic Soil ^a	0.8	0.8	0.8	0.8	0.8	0.8	0.8
Harvested Wood	(123.8)	(106.0)	(88.7)	(92.4)	(95.7)	(98.8)	(108.5)
Products in Use	(54.8)	(42.6)	(24.6)	(27.8)	(30.3)	(31.5)	(39.2)
SWDS	(69.0)	(63.4)	(64.1)	(64.6)	(65.5)	(67.2)	(69.3)
Total Net Flux	(787.6)	(661.5)	(671.4)	(721.9)	(659.7)	(698.6)	(691.8)

Table 6-8: Net CO₂ Flux from Forest Ecosystem Pools in *Forest Land Remaining Forest Land* and Harvested Wood Pools (MMT CO₂ Eq.)

Notes: Forest ecosystem C stock changes do not include forest stocks in U.S. Territories because managed forest land for U.S. Territories is not currently included in Section 6 Representation of the U.S. Land Base. The forest ecosystem C stock changes do not include Hawaii because there is not sufficient NFI data to support inclusion at this time. However, managed forest land area for Hawaii is included in Section 6 Representation of the U.S. Land Base so there are small differences in the forest land area estimates in this Section and Section 6. See Annex 3.13, Table A-214 for annual differences between the forest area

Collect CO₂ from LFGTE

Carbon Capture and Storage (CCS)

Source: European Commission, DG TREN

Do all organics degrade?

What keeps organics from breaking down?

- Preservatives salt
- Temperature cold
- Moisture arid
- pH peat bogs

is the proof! This @centredaily was dug up from the Clinton County Landfill. Date: 8/6/91. Still readable after buried in a landfill for 27 years. #recycle

3.32 PM . Aug 9 2018 . Twitter Web Client

Why We Dug Atari

"Punk archaeologists" explain that they went looking for more than just video-game cartridges in a New Mexico landfill.

By William Caraher, Raiford Guins, Andrew Reinhard, Richard Rothaus, and Bret Weber

Atari's dumped games unearthed (Raiford Guins)

Degradable carbon?

DSWA test cells

- Two 1-acre landfill cells
- Time capsules with identical materials placed in 1990
- Extracted in 1998

<u>Test Cell #1 – Wet</u>

- Waste buried 1990
- Capsule removed 1998
- Burial time 8 years

Test Cell #2 – Dry

- Waste buried 1990
- Capsule removed 1998
- Burial time 8 years

Conclusion

Moving towards net zero

- Reduce organics
- Continue to improve LFG collection
 - Focus on point sources: construction activities, cover & leaks
- Continue to improve emissions calculations
 - Methane oxidation estimates
 - k-values
- Increase LFG utilization
- Sequester carbon & carbon dioxide