

Lithium Battery Webinar Series Recycling & Fire Prevention at Waste Hauler, Storage, & Processing Facilities

A 30-Year Evolution of Lithium Battery Applications, Chemistries & Form Factors

George A. Kerchner

PRBA – The Rechargeable Battery Association

1776 K Street, NW

Washington, DC

wiley.law

Lithium ion Battery-Powered Products in Kerchner Household

- 1. Pole saw
- 2. Two leaf blowers
- 3. Notebook
- 4. E-reader
- 5. Vacuum
- 6. Chainsaw
- 7. Tablet
- 8. Cellular phone
- 9. Drill
- 10.Circular saw (not in photo)

Lithium Metal Batteries v. Lithium ion Batteries

- Lithium metal batteries:
 - Generally non-rechargeable (also referred to as "primary" batteries)*
 - Contain metallic lithium, most contain organic solvent
 - Regulated for transport by U.S. Department of Transportation based on lithium metal content in grams (g)
- Lithium ion batteries:
 - Rechargeable (also referred to as "secondary" batteries)
 - Does not contain metallic lithium.
 - Contain organic solvent
 - Regulated for transport by U.S. Department of Transportation based on "Watt-hours" (Wh)

^{*} There are rechargeable lithium metal battery chemistries on the market!

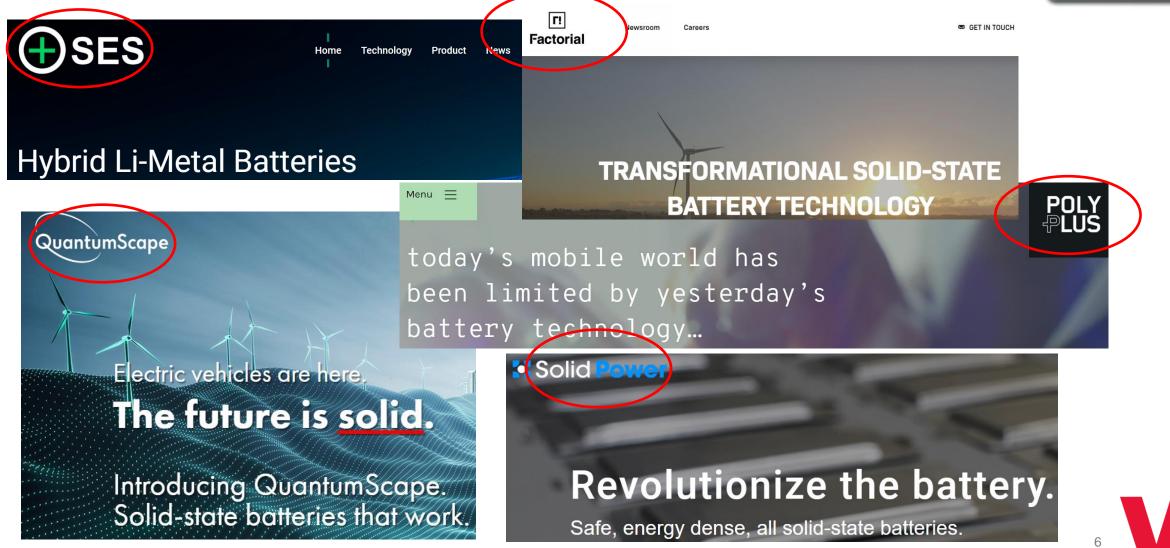
Lithium ion Battery Chemistries*

- Lithium Cobalt Oxide (LiCoO2)
- Lithium Manganese Oxide (LiMn2O4)
- Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2)
- Lithium Iron Phosphate (LiFePO4)
- Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2)
- Lithium Titanate (Li4Ti5O12)

^{*} This is not an exhaustive list.

Lithium Metal Battery Chemistries

(Non-rechargeable)


- Lithium Manganese Dioxide
 - Consumer-type, 3 Volts and most common lithium metal battery
- Lithium Sulphur Dioxide
 - Military and aerospace
- Lithium Iodine
 - Implanted cardiac pacemakers
- Lithium Thionyl Chloride
 - Military and industrial (water meters, oil wells)
- Lithium Iron Disulphide
 - Consumer-type, 1.5 Volts (e.g., Energizer AA and AAA)

Solid State Lithium Batteries

Why Lithium?

Advantages

- High energy density
- Rapid charge and high load capabilities
- Long cycle and extended shelf-life; no maintenance
- Good energy efficiency
- Low self-discharge

Limitations

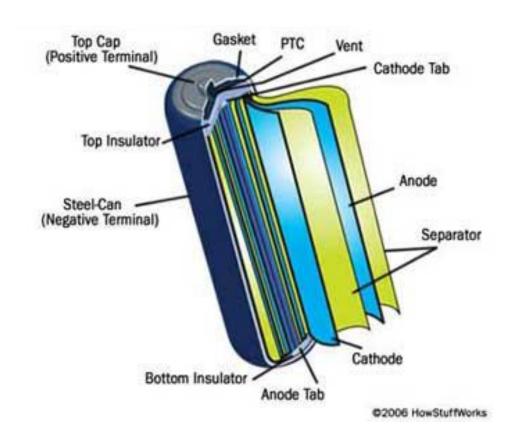
- Requires protection circuit to limit voltage and current
- Possibility of venting and thermal runaway
- Degrades at high temperature and when stored at high voltage
- Rapid charging challenges at lower temperatures (< 32°F)
- Transportation regulations complex and burdensome
- Higher cost than nickel and lead-based systems

Lithium ion Cell Form Factors

Lithium ion prismatic

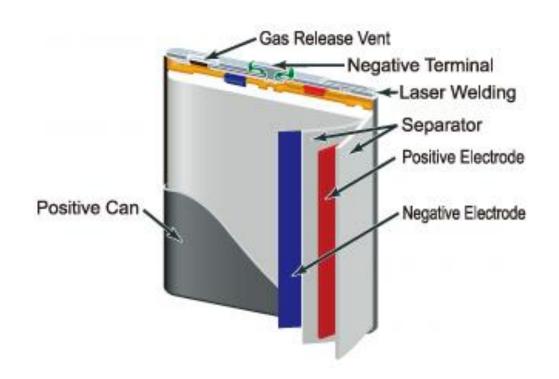
Lithium ion cylindrical

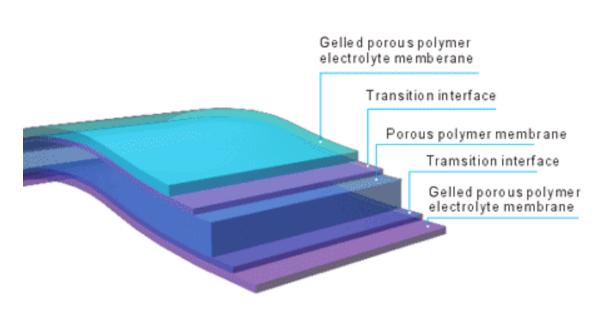
Lithium ion polymer/pouch



Other Form Factors?

Lithium ion Cylindrical Cell Structure





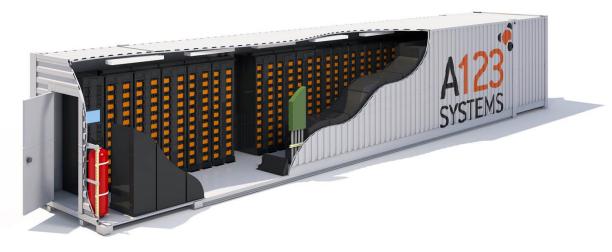
Lithium ion Prismatic and Polymer/Pouch Cell Structure

Lithium ion Batteries/Battery Packs

Lithium ion and Lead Batteries

Lithium ion Battery "Modules" and Battery "Assembly"

Modules


Assembly

Containerized Lithium ion Batteries

Organizations, Codes, and Standards Impacting Lithium Battery Storage

- National Fire Protection Association
 - Responsible for NFPA 1 Fire Code
- NFPA 855 Standard
 - Standard for the Installation of Stationary Energy Storage Systems
 - Includes Chapter 14 on battery storage
 - Amendments in process to limit scope to lithium batteries
- International Code Council
 - Responsible for International Fire Code

New Chapter in International Fire Code Under Development on Storage Requirements for Lithium Batteries

- Section 321.1 General (include list of exceptions)
 - 321.2 Permits
 - 321.3 Fire Safety Plan
 - 321.4 Storage Requirements
 - 321.4.1 Limited Indoor Storage in Containers
 - 321.4.2 Indoor Storage Areas
 - 321.4.3 Outdoor Storage

Indoor Storage: Sections 321.4

- Applies to indoor storage with more than 15 cubic feet of lithium batteries
 - 1. Secure permit and have fire safety plan
 - 2. Technical report to evaluate level of hazard and protection measures
 - 3. Construction requirements (e.g., 2-hour rated fire barriers)
 - 4. Fire Protection System
 - 5. Fire Alarm System
 - 6. Explosion Control

Thank you!

George A. Kerchner
PRBA – The Rechargeable Battery Association
1776 K Street, NW
Washington, DC
gkerchner@wiley.law
202.719.4109