

Ground Asphalt for Roads

Using Recycled Content Materials in Road & Infrastructure Projects Virtual Workshop November 16, 2020

MaineDOT asphalt facts

- 8800 miles of roads
- 1M tons asphalt/year
 - 2019 avg. cost -\$120/ton
- Typical pavement life: 10 years

Why recycle asphalt?

- Minimize environmental impact
- Reduced energy consumption
- Require fewer natural resources
- Reduced emissions
- Long lasting performance
- Cost effective

US Asphalt recycling – 2019*

- •89.2 Million Tons reclaimed asphalt pavement (RAP) used
- 94% of asphalt removed from projects was recycled
- •921,000 Tons of recycled asphalt shingles (RAS)
- •24 Million Barrels of virgin asphalt binder saved
- •2.4 Million Metric Tons less CO₂ generated

*National Asphalt Pavement Association

Asphalt recycling applications

- New asphalt mixture production
 - Reclaimed Asphalt Pavement (RAP)
 - Reclaimed Asphalt Shingles (RAS)
- In-place recycling
 - Cold In-place, Hot In-place, or Full Depth
- Cold Central Plant Recycling
 - Plant Mixed Recycled Asphalt Pavement (PMRAP)

Coarse and fine aggregate

Different gradings based on intended use: 19mm, 12.5mm, 9.5mm

Asphalt binder

- The glue that holds it all together
- Refined from crude oil
- Viscoelastic flows at higher temps
- The most costly component
- Typically 5% 7% of mixture
 - Reduced by % from RAP

Asphalt binder

- Performance Grading system we need asphalt that is:
 - Flexible at low temps resist cracking
 - Stiff at high temps resist rutting
- Grade selected for local traffic and climate
- Asphalt stiffens over time due to oxidation
 - Exposure to heat and air

0°C to -36°C

Asphalt mix production

- Aggregates and recycled material proportioned, blended
- Heated to remove moisture and reach mixing temperature
 +/- 300°F
- 1.5 to 2 gal. of fuel/ton
- Mixed w/Binder and ready for transport

Trucks loaded and delivered to paver

Asphalt placement and compaction

Reclaimed asphalt pavement (RAP)

- Typically generated by milling existing pavements
- Contains 3% to 6% asphalt plus aggregate
- Asphalt is stiffer due to oxidation
 - Good rut resistance, but less crack resistant
- Maine limits RAP content in new hot mix to 30%
 - % allowed based on consistency of RAP; 3 Classes
 - Usually 15% to 20%
- Also used in Cold Central Plant Recycling

- Milling existing pavements during rehabilitation
- Excavation of paved roads/parking lots/driveways, etc.
- Asphalt plant waste

Pavement milling

RAP – before processing

RAP from excavation

Millings from roadway

RAP – after crushing & screening

- Sized for inclusion in all mix gradings
- Improved consistency
- Consistent material flow during plant production

MaineDOT RAP specification

Classification	Maximum RAP Percentage Allowed	Asphalt content standard deviation	Percent passing 0.075 mm sieve standard deviation	Percent passing 0.075 mm sieve / asphalt content ratio	Residual aggregate M- D loss value
Class III	10%	≤1.0	N/A	≤4.0	
Class II	20%	≤0.5	≤1.0	≤2.5	<u>≤ 18</u>
Class I	30%	≤0.3	≤0.5	≤1.7	

Table 1: Maximum Percent RAP According to Test Results

Reclaimed asphalt shingles (RAS)

Reclaimed asphalt shingles (RAS)

- Generated from tear-off shingles
- Other material removed wood, nails, etc.
- Contains 20 25% asphalt; some fine aggregate
 - Asphalt not "effective" doesn't flow even at 400° F
 - Highly oxidized due to sun/heat exposure
- Maine limits to 3% used in maintenance paving only
 - Have experienced pavement failures

Grinding shingles to create RAS

RAS specifications

- Each load must include a Bill of Lading (unless pre-consumer waste)
 - Name of processing facility
 - Date shipped
 - Certified test results indicating no asbestos
 - Name, address of sampler and testing lab
- RAS typically mixed with RAP or sand before introducing into plant

NHDOT RAS experiment

- Recovered some asphalt from recycled shingles
- Placed in a tin with new asphalt binder
- Heated in oven at 400 F
- RAS asphalt did not flow
- After cooling, RAS asphalt cracked when tin bent – new binder remained flexible

Failures related to RAS use

In-place recycling

In-place recycling

- Advantages
 - Utilizes higher percent of reclaimed material often 100%
 - Reduces/eliminates transport of material
 - Reduces energy and emissions versus reconstruction
 - Corrects distresses that paving cannot fix
- Limitations
 - Not applicable to all projects
 - Sometimes requires out-of-state contractors

Cold In-place Recycling

Cold In-place Recycling

- Partial depth repair: 3" 5" typical
- Corrects surface oxidation, rutting and cracking
- Creates a stress-absorbing layer; reduces reflective cracks
- Needs lots of real estate long equipment train
- Out-of-state contractors

Finished product before applying surface layer

Hot In-place Recycling

Hot In-place Recycling

- Treats top 1.5" of existing asphalt pavement
- Corrects minor rutting, cracking, oxidation
- Introduces a rejuvenating agent into the mixture
- Surfaced with a layer of new asphalt

Full-depth Recycling

FDR process

- Pulverizes entire asphalt layer plus 2" – 3" into granular base
- Allows reshaping of roadway profile and cross-slope
- Eliminates existing ruts, cracks
- Treated with stabilizing agent:
 - Emulsified asphalt
 - Foamed asphalt
 - Cement

Typical candidate for FDR

FDR process

Pulverized pavement

Spreading cement

Emulsified asphalt

Foamed asphalt

Cement stabilization

FDR finished product

Cold Central Plant Recycling

Cold Central Plant Recycling

- 100% RAP
- 2% 3% emulsified asphalt; 1% cement
- Cold process no drying or heating
- Surface with a layer of new asphalt
- Costs much less than new asphalt mix
- MaineDOT produces the material reduces cost
- Average 65,000 tons/year

Where is PMRP used?

1st Layer of asphalt over gravel base

Where is PMRP used?

Structural leveling course over existing pavement

Example of Material & Finished Product

Future efforts

- Working with paving association to increase RAP usage
 - Specification changes
 - Performance testing
- Exploring use of rejuvenating agents
- Monitoring action on other recycled materials
 - Plastic
 - Glass
 - Lignin

Closing thoughts

- MaineDOT successfully recycling asphalt for 30+ years
 - Always learning
- Need to select the right technology for conditions: hot mix, cold mix, in-place
- Must consider long-term performance
- Recycled pavements need to be engineered no "linear landfills"

For more information

Rick Bradbury Maine Department of Transportation (207) 624-3482 Richard.Bradbury@maine.gov