

Identifying Process Energy Efficiency Opportunities at Facilities

Minnesota Technical Assistance Program

UNIVERSITY OF MINNESOTA Driven to Discoversm

What to expect

- ...integrating energy efficiency (E2) practices into pollution prevention (P2) planning practices
- ...discuss their experience working with facilities to identify operational improvements and other opportunities to become more energy efficient

MnTAP at a glance

- A continuum of learning, adapting, and applying
 - On-site assistance
 - Site visits, interns, company teams
 - Demonstrations and research projects
 - Minnesota Materials Exchange
 - Communications and outreach
 - Web site and social media
 - Fact sheets and case studies

MnTAP at a glance

Cost savings achieved

Telephone and email assistance 1%

Site visits & Intern Teams projects 52% 47%

Minnesota Technical Assistance Program www.mntap.umn.edu

University of Minnesota Driven to Discover™

MnTAP: Connecting the dots---

- Legislation to help business with new hazardous waste regulations
- Legislation to integrate pollution prevention into assistance
- Staff with relevant backgrounds
 - Adaptability
 - Immersion
 - Training

MnTAP: connecting the dots

- Identify with the pulse of Minnesota business concerns
 - Process efficiency
 - Related process energy costs
 - Business priorities (quality, waste, and energy)
- Energy legislation obliges utilities to conserve

Minnesota Technical Assistance Program www.mntap.umn.edu

Integrating E2 practices

- What
 - P2 plans since early 1990s
- How
 - Step 1: Getting started
 - Step 2: Use a team
 - Step 3: Determine a baseline
 - Step 4: Determine and analyze alternatives
- Why
 - Step 5: Set objectives for implementation

Energy efficiency strategy

- Why we concentrate on process energy?
 - Familiarity and experience
 - Targeted: likely the major contribution to energy load at a facility
 - Partnerships with utilities
 - Helps to frame utility custom rebate opportunities

Why process energy?

- Energy efficiency is integral to traditional pollution prevention impacts
 - Process efficiency
 - Defects
 - Waste generation
- A productive outgrowth of multimedia cross-training

Why process energy?

 We tend to look at how equipment is used in the process at least as much as the equipment itself

Why process energy?

- Important to understand and analyze the entire process, not an individual, isolated piece of equipment
 - Why this equipment?
 - How is this related to that?
 - Why this speed, pressure, flow rate?
 - Where does this piping go?
 - If you improve this step, do you need to do that step?

Operations we concentrate on

- Department of Energy emphasis topics
 - Energy intensive
 - Aging yet robust infrastructure
 - Old technology
 - Built and installed when energy costs were not as important
 - Overlooked as overhead
 - High replacement cost
 - Complex systems

Operations we concentrate on

Compressed air

- In wide use across most industries
- Inherently inefficient
- Uncontrolled
- Free
- Misused and abused

Operations we concentrate on

- Process heat
 - Boilers, steam
 - Furnaces and ovens
 - Wasted heat
- Fans and pumps
 - Baghouses
 - Wastewater treatment plants
- Motors
 - Multiple applications

Minnesota Technical Assistance Program www.mntap.umn.edu

Needed expertise

- Industrial process refrigeration knowledge is currently a need
 - Interest group forming
 - Contact Jamey Evans
 - Golden Field Office (U.S. DOE)
 - Energy Efficiency & Renewable Energy
 - 303-275-4813

How we identify opportunities

Analyze the process

- Speeds
- Pressures
- Temperatures
- Flows
- Cycle times

How we identify opportunities

- Measure with data logging
 - Operational nuances
 - Record of performance
 - Before and after perspective
- Discover the best efficiency point

How we identify opportunities

Overlay best practices

- Heat recovery
- Automation and process control
- Predictive and preventive maintenance
- Standardization
- Close loops

Project: Researching energy conservation potential

- Initiated statewide roadmap for industrial energy efficiency
- Identified savings potential
 - 25 million therms
 - 271 million kWh

Sponsor: Minnesota Department of Commerce

Minnesota Technical Assistance Program www.mntap.umn.edu

Project: P2 and E2 in metal fabrication facilities

- 40 facilities affected
- Significant implementation
 - 11,500 lbs of waste
 - -4.6 million gallons of water
 - 1.3 million kWh
 - 4,000 therms
 - \$90,000

Sponsor: U.S. EPA Region 5

Minnesota Technical Assistance Program www.mntap.umn.edu

University of Minnesota Driven to Discover™

Project: Energy efficiency program for Minnesota businesses

- 3 trainings, 24 assessments, 3 tech demos
- Implemented savings
 - 1,672,150 kWh
 - 158,100 therms
 - -\$197,000
- 2 2011 intern projects
- State-wide reach

Sponsor: U.S. Department of Energy through Minnesota Department of Commerce

Minnesota Technical Assistance Program www.mntap.umn.edu

Impact: Meat processor

- DOE energy assessment
- Team with MnTAP assistance
- Implemented changes
 - 88,000 therms
 - 11 million gallons of water
 - \$75,000

So- what makes sense

- ...<u>integrating</u> energy efficiency (E2) practices into pollution prevention (P2) assistance
- ...working to identify <u>operational</u> <u>improvements</u> leading to **both** waste reduction and energy efficiency

Comments/questions?

Jhank you for your attention

Mick Jost jostx003@umn.edu 612.624.4694

Minnesota Technical Assistance Program www.mntap.umn.edu

