PCBs in Building Materials and Indoor Air Exposure/Health Risks

Stephen G. Zemba, Ph.D., P.E. October 14, 2020

PCBs in Building Products: Implications for Brownfields

SANBORN

HEAD

© Sanborn, Head & Associates, Inc.

Outline/Overview

- PCB sources in buildings
- Indoor air levels and profiles
- Toxicity values and approaches
- Case studies

PCBs in Indoor Air - Burlington (VT) HS (September 2020)

Field Sample	Sample Description	Results
No.		
	Building F	
F-312-06	Child Care Center – Room F-312	720 ng/m^3
F-312-Dup-07	Child Care Center – Room F-312	640 ng/m^3
F-312-HF-51	Child Care Center – Room F-312	160 ng/m^3
F-304-18	Health Sciences – Room F-304	400 ng/m^3
F-309-26	Criminal Justice – Room F-309	760 ng/m^3
F-205-30	Metals Shop Jewelry – Room F-205	1300 ng/m^3
F-210-28	Welding Shop – Room F-210	5800 ng/m^3
F-214-21	Construction Trades Shop – Room	6300 ng/m^3
	F-214	
F-103-19	Automotive Shop – Rom F-103	1900 ng/m^3

Other Buildings

A: $1 - 260 \text{ ng/m}^3$

B: $27 - 270 \text{ ng/m}^3$

C: $60 - 130 \text{ ng/m}^3$

D: $11 - 300 \text{ ng/m}^3$

E: $16 - 110 \text{ ng/m}^3$

VT DOH (2013) Recommended Exposure Level = 15 ng/m³

PCB Properties

- PCBs synthesized in 1929, banned in 1979
- Used in >1,000 products
- 209 congeners, produced as mixtures (e.g., Aroclors)
 - 14 are "co-planar" dioxin-like congeners
- Vapor pressure depends on degree of chlorination

<= Data from Öberg (2001) in units of mm Hg

Commercial Uses of PCBs / Sources in Buildings

- Transformers and capacitors
- Electrical equipment including voltage regulators, switches, re-closers, bushings, and electromagnets
- Oil used in motors and hydraulic systems
- And spills onto floors
- Old electrical devices or appliances containing PCB capacitors
- Fluorescent light ballasts
- Cable insulation
- Thermal insulation material including fiberglass, felt, foam, and cork
- Adhesives and tapes
- Oil-based paint
- <u>Caulking</u>
- Plastics
- Carbonless copy paper
- Floor finish

Residual PCB Sources in Building Materials

- Caulk
- Fluorescent light ballasts
- Paint
- Ceiling tiles
- Secondary sources

PCBs Measured in Caulk

Interior Caulks **Exterior Caulks** From 5 Schools From 3 Schools Total PCBs in Caulk

Note: Multiple samples of the same type of caulks were collected

Number of Samples:

427

73

Percent of Caulk Samples

< 50 ppm	82.2	37.0
50 – 999 ppm	7.7	6.8
1,000 - 99,999 ppm	4.0	21.9
100,000 – 199,999 ppm	2.3 7	12.3
200,000 – 299,999 ppm	3.3	15.1
300,000 – 399,999 ppm	0.2	6.8
> 400,000 ppm	0.2	0.0

100,000 ppm is 10% by weight

EPA (2012). Polychlorinated Biphenyls (PCBs) in School Buildings: Sources, Environmental Levels, and Exposures. EPA/600/R-12/051.

Fluorescent Light Ballasts

	School 1	School 2	School 3	School 4	School 5	School 6**
Total Examined	727	487	619	927		33
Likely PCB-Containing	417	373	275	879		8
% Ballasts Likely w PCBs	57%	77%	44%	95%		24%

EPA (2012). Polychlorinated Biphenyls (PCBs) in School Buildings: Sources, Environmental Levels, and Exposures. EPA/600/R-12/051.

^{**} Only a small subset of ballasts in the school were surveyed

Secondary Sources

Matarial	Concentration (ppm by mass)		
Material	Median	Maximum	
Paint	39	750	
Fiberboard	31	55	
Dust	22	87	
Varnish	11	62	
Ceiling tile	7.6	14	
Laminate	5.4	200	
Floor tile	4.4	57	

Emissions and Source Potential

- Emissions Assuming:
 - 100 ng/m³ of PCBs in indoor air
 - In a 5 m by 10 m by 10 m room
 - With 2 changes of air per hour
 - Translates to a mass flux of 0.1 mg/hour \cong 2 g/year
- Source Potential Assuming:
 - A 2 ft by 4 ft window with a ¼ in triangular bead of caulk
 - Caulk density 1.5 g/cm³ and 10% PCBs (by mass)
 - Equates to 354 g PCBs
- Conclusion: There can easily be enough PCBs present in building materials to sustain PCBs at levels of concern in indoor air

PCB Concentrations Measured in Indoor Air

Location	Date	Concentrations (in ng/m³)	
Housing Complex, CA	1	2002	96 – 234
Lederle Center. U-Mass Am	nherst	2006	220 – 640
Estabrook School, Lexingto	n, MA	2010	300 – 1,800
New York City Schools	.S. 199M	2010	410 – 1,500
Pew fork city schools	P.S. 309K	2010	540 – 5,000
Burke School, Peabody, MA		2011	260 – 740
Child Care Center, Boston, MA		2012	120 – 200
Public Buildings, Germany		2002	720 – 4,200
Apartment Complex, Denmark		2012	170 – 3,800

Estimated 13,000 to 26,000 U.S. schools impacted (Herrick *et al.*, 2016)

- Residential
 Screening Level
 4.9 ng/m³
- Industrial
 Screening Level
 21 ng/m³
- Public School
 Levels

 $100 - 600 \text{ ng/m}^3$

Toxicological Values for Risk Assessment

Carcinogenic Potencies (kg-day/mg) (EPA IRIS, 1996)

High risk/persistence1 to 2

Low risk/persistence0.3 to 0.4

Lowest risk/persistence0.04 to 0.07

2,3,7,8-TCDD 130,000 (TEQ/co-planar)

"Non-cancer" Reference Doses (ng/kg-day) (EPA IRIS, 1994 for Aroclors)

Aroclor 125420 higher risk

Aroclor 101670 lower risk

2,3,7,8-TCDD0.0007 TEQ/co-planar

Neurological Equivalents Reference Doses (ng/kg-day) (Simon, 2007)

Aroclor 12548 higher risk

Aroclor 101670 lower risk

Effective Dioxin-Like Potencies and RfDs

Aroclor mixture	Cancer Potency (d-kg/mg) High Risk: 1 to 2 Low Risk: 0.3 to 0.4 Lowest Risk: 0.04 to 0.07	Non-Cancer Reference Dose (ng/kg-d) Low Risk: 70 High Risk: 20
1242	0.09	996
1248 (v1)	0.22	415
1248 (v2)	0.23	390
1254	3.55	26
1254 Late	0.47	193
1260	0.06	1525

Based on:

- Potency of 130,000 mg/kg-d and RfD of 0.0007 ng/kg-d (EPA RSLs)
- EPA-recommended TEFs for 14 coplanar PCBs
- ATSDR (2000) PCB Toxicity Profile for Aroclor mixture compositions

Indoor Air Screening Levels

EPA's Exposure Levels for Evaluating Polychlorinated Biphenyls (PCBs) in Indoor School Air (ng/m³)

(https://www.epa.gov/pcbs/exposure-levels-evaluating-polychlorinated-biphenyls-pcbs-indoor-school-air)

Age 1-<2	Age 2-<3	Age 3-<6	Age 6-<12	Age 12-<15	Age 15-<19	Age 19+
100	100	200	300	500	600	500

EPA's Regional Screening Levels (ng/m³)

(https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables, TR=1E-06)

	High Risk	Low Risk	Lowest Risk
	(dust)	(evaporated)	(99.5% <4 Cl)
Residential	4.9	28	140
Industrial	21	120	610

PCB Congener	2,3,7,8- TCDD TEF
77	0.0001
81	0.0003
105	0.00003
114	0.00003
118	0.00003
123	0.00003
126	0.1
156	0.00003
157	0.00003
167	0.00003
169	0.03
170	0
180	0
189	0.00003

Composition data from ATSDR (2000) Toxicity Profile for PCBs

PCB Congener	2,3,7,8- TCDD TEF
77	0.0001
81	0.0003
105	0.00003
114	0.00003
118	0.00003
123	0.00003
126	0.1
156	0.00003
157	0.00003
167	0.00003
169	0.03
170	0
180	0
189	0.00003

Composition data from ATSDR (2000) Toxicity Profile for PCBs

PCBs in Denmark Homes

Danish Health Protection Agency, 2012

- 83 PCB-contaminated apartments
- 27 congeners in caulking, indoor air, & serum
- Plotted against Aroclor 1254 composition

* indicates dioxin-like (co-planar) congener

PCB Homologue Groups in Indoor Air in MA Schools

- Patterns shift to lower chlorinated congeners
- Child care center an exception

PCB Homologue Groups & Congeners in Air Sampling

- Norström et al (2010) & ATSDR (2000)
- Outdoor air contains 0.04 0.5 ng/m³ PCBs

- Davis et al (2002) vapor intrusion investigation
- Soils contain up to 160,000 mg/kg PCBs
- PCBs up to 220 ng/m³, >97% mono PCBs

Case Study #1: "Brownfield" Redevelopment

- Mill building conversion to condominiums
 - PCB-impregnated floors
 - Renovation workers at risk?
- Exposure estimate
 - Assume 3.3 mg/m³ of dust (high level)
 - 5.8 mg/kg PCB in dust
 - Yields exposure to 20 ng/m³ of PCBs
- Acceptable/safe levels
 - OSHA PEL: 500,000 μg/m³
 - More recent studies: 10,000 μg/m³

Case Study #2: Child Care Center

- PCB concentrations measured in indoor air
 - 110 200 ng/m³ at time of study
 - > 300 ng/m³ previously
 - Exceed EPA guideline of 100 ng/m³ for 1-2 and 2-3 yr-olds
- Questions
 - Should center be closed?
 - What about < 1 yr-olds?</p>
- Issues and perspectives
 - Homologue profile resembles Aroclor 1254
 - EPA guidelines derive from toxicity study in monkeys
 - Safety factor of 250 applied
 - Humans may be less sensitive to PCBs than monkeys
 - Nursing infants receive ~ 20 times more exposure than EPA's Reference Dose

Case Study #3: "Brownfield" Redevelopment

- Industrial building conversion to luxury apartments
 - PCB-impregnated concrete floors to remain in place
 - Future residents at risk?
- Exposure estimate
 - Measured volatilization rate
 - Indoor air model 44 ng/m³
 - Homologue pattern indicates low-risk PCBs

- Acceptable/safe level 98 ng/m³ based on EPA school methodology
- Mitigation through encapsulation (concrete layer plus epoxy)
- Confirmatory indoor air samples:
 - 1st round: All ND
 - 2nd round: 2 of 5 low detects (0.5 ng/m³ and 1.2 ng/m³)

Acceptable Concentration (Case Study #3)

Public Health Level exposure methodology (EPA 2009 Exposure Estimation Tool:

Allowable incremental + Background ≤ Safe level

$$C_{Indoor} = \frac{B_{w}}{I_{r}} (R_{fD} - e_{diet}) - C_{outdoor}$$

- C_{Indoor} Allowable PCB concentration in indoor air (ng/m³)
 B_w Body weight = 11.4 kg (small child)
 I_r Inhalation rate = 8 m³/d
 R_{fD} Reference dose (ng/kg-d) 20 ng/kg-d (high risk) or 70 ng/kg-d (low risk)
- Background exposure = 1.2 ng/kg-d (Total Diet Study) EPA default 8 ng/kg-
- Background PCBs in outdoor air = 0.5 ng/m³

Acceptable Concentration (Case Study #3)

$$C_{Indoor} = \frac{B_W}{I_r} (R_{fD} - e_{diet}) - C_{outdoor}$$

- Application of formula yields:

 - $C_{Indoorl}$ = 98 ng/m³ if R_{fD} = 70 ng/kg-d EPA RSL = 28 ng/m³ $C_{Indoorl}$ = 26 ng/m³ if R_{fD} = 20 ng/kg-d EPA RSL = 4.9 ng/m³
- Compare to building estimates:
 - 44 ng/m³ flux chamber model
 - 4.5 ng/m³ static test
 - ND for encapsulant test

Encapsulation / Risk Mitigation (Case Study #3)

- Diffusion model to predict effectiveness of epoxy and concrete encapsulants
 - 1" concrete layer delays PCB volatilization over practical lifetime of building (100s of years)
 - Epoxy effective for over 60 years

Diffusion model through porous medium x Distance into layer

 δ Encapsulant thickness

D Diffusivity in layer

 C_0 Concentration at x = 0

t Time.

PCB concentration distribution in the concrete layer:

$$C(x,t) = C_0 \frac{\delta - x}{\delta} + C_0 \sum_{n=1}^{\infty} (-1)^n \frac{2}{n\pi} \sin\left(n\pi \frac{\delta - x}{\delta}\right) \exp\left(-\frac{n^2 \pi^2 Dt}{\delta^2}\right)$$

PCB Flux from concrete:

$$D\frac{C_0}{\delta} \left(1 + 2\sum_{n=1}^{\infty} (-1)^n \exp\left(-\frac{n^2 \pi^2 Dt}{\delta^2}\right) \right)$$

Congener Distributions – Burlington HS Data

Aroclor 1254
Distribution in Red
Limited Shift Toward
Low-Cl Congeners

Congener Distributions – Burlington HS Data

Concentrations < 80 ng/m³

Aroclor 1254 Distribution in Red

Considerable Shift Toward Low-Cl Congeners

Carcinogenic Unit Risk Factors for PCB Mixtures

Sample-specific unit risk factors estimated from weighting congener distributions and dioxin-like PCBs

Green Lines at Unit Risk Factors for PCB Mixtures per EPA RSL Tables

Summary

- Levels of PCBs measured in indoor air due to building material sources have been near or greater than recommended exposure levels
- PCBs found in many (but not all) indoor air emphasize the less chlorinated, and generally less toxic, congeners of the parent mixtures
- Actual risks to health may be substantially overestimated (or conversely, exposure guidelines are highly protective)
- PCB-containing building materials remain a source of PCBs to indoor air for many years
- PCB risk assessment methods are uncertain, could be improved, and will likely evolve

References

- ATSDR (2000). Toxicological Profile for Polychlorinated Biphenyls. Atlanta, GA: Agency for Toxic Substances and Disease Registry.
- Davis BJ, Beach M, Wade, Klein AK and Hoch K. (2002). Risk Assessment of Polychlorinated Biphenyls (PCBs) in Indoor Air. The Toxicologist, Supplement to *Toxicological Sciences* 66:106. Abstract number 516.
- EH&E (2011). Site-specific assessment for Polychlorinated Biphenyls, Estabrook School, Lexington, MA. Environmental Health & Engineering, Needham, MA.
- EPA (2009). PCB Exposure Estimation Tool, Version 1.1, U.S. Environmental Protection Agency, October 2, 2009.
- EPA (2012). Polychlorinated Biphenyls (PCBs) in School Buildings: Sources, Environmental Levels, and Exposures. EPA/600/R-12/051.
- Herrick RF, Stewart JH, and Allen JG (2016). Review of PCBs in US Schools: A Brief History, Estimate of the Number of Impacted Schools, and an Approach for Evaluating Indoor Air Samples. *Environ Sci Pollut Res Int* **23(3)**:1975-1985.
- Kohler M, Zennegg M, and Waeber R (2002). Coplanar Polychlorinated Biphenyls (PCB) in Indoor Air. *ES&T* 36(22):4735-4740
- Norström K, Czub G, McLachlan M, Hu D, Thorne P, and Hornbuckle K (2010). External exposure and bioaccumulation of PCBs in humans living in a contaminated urban environment. *Environ Int* 36(8): 855–861.
- Simon T, Britt JK and James RC (2007). Development of a neurotoxic equivalent scheme of relative potency for assessing the risk of PCB mixtures. *Reg Tox Pharm* 48:148-170.
- Öberg, T (2001). Prediction of physical properties for PCB congeners from molecular descriptors. *Internet Journal of Chemistry* 4, Article 11.

Thank you!

Stephen Zemba, Ph.D., P.E. szemba@sanbornhead.com
802.391.8508