

Presentation Outline

Introduction – focus on chlorinated ethenes

- Data needs
 - Site characterization
 - Bench scale testing
 - Environmental molecular diagnostics
 - Pilot testing
- Amendment injection design
 - Amendment selection
 - Injection methods and layout
- Monitoring needs

Data Needs - Site Characterization

Contaminants

- Parent chlorinated aliphatic hydrocarbons (CAH) compounds and their dechlorination products
- PCE, TCE, cis-DCE, VC, ethene, and ethane
- Co-contaminants that may impact bioremediation rate and extent
 - BTEX compounds can stimulate reductive dechlorination
 - Other solvents can inhibit reductive dechlorination (e.g. TCA, CT, CF)

Data Needs - Site Characterization (cont.)

- Electron donor parameters
 - Indicators of bioavailable carbon
 - Chemical oxygen demand (COD), total organic carbon (TOC), or specific volatile fatty acids (VFA's)
- Indicators of prevailing redox conditions
 - Oxidation-reduction potential (ORP), dissolved oxygen (DO), ferrous iron, sulfate, and methane
- Biological activity indicators and water quality parameters
 - pH, temperature, specific conductance, alkalinity
 - metals

Data Needs – Environmental Molecular Diagnostics

- Advanced diagnostics can be useful during site characterization
 - Quantitative polymerase chain reaction (qPCR) for *Dehalococcoides spp.* (DHC) and for functional genes (vcrA, bvcA, and tceA)
 - Useful to assess whether bioaugmentation may be needed
 - Absence of bacteria during pre-bioremediation characterization doesn't always mean bioaugmentation will be needed

Data Needs – Environmental Molecular Diagnostics (cont.)

- Other tools can be useful but are not required to design a bioremediation system
 - Phospholipid Fatty Acid (PLFA)
 - Provides information on entire bacterial community through analysis of microbial membranes
 - Denaturing gradient gel electrophoresis (DGGE)
 - DNA-based technique which generates a genetic profile of the microbial community
 - Compound specific isotope analysis (CSIA)
 - Generates isotopic characterization of individual compounds which can be used to quantitatively assess degradation processes.

- Bench scale testing purposes
 - Assess whether bioremediation will work
 - Determine design parameters
- Bench scale testing to assess whether bioremediation can be stimulated is not required at most sites
 - Many limiting conditions can be overcome through design (i.e. low pH, high sulfate, etc.)
 - Site characterization should identify any site conditions that would preclude bioremediation
- Exception presence of co-contaminants that are known to inhibit reductive dechlorination.

Data Needs – Bench scale testing (cont.)

- Bench scale testing can provide some useful design information
 - <u>Relative</u> comparison of electron donors in terms of concentration, longevity, dechlorination rate, etc.
 - <u>Relative</u> comparison of bioaugmentation cultures
- Use caution when applying degradation/growth rates from lab studies to the field
- In situ microcosms can overcome these limitations

HVCTEF Z. 8 KV X88. 8K 37544 Dehalococcoides

Data Needs – Pilot Testing

- The most useful and accurate design information is derived from pilot studies
- Small-to-moderate scale electron donor injection(s) and periodic monitoring
- Provides site-specific information:
 - Electron donor distribution
 - Time to onset of degradation
 - Time to complete dechlorination
 - Need for bioaugmentation

Subsurface Conditions Affecting Injection Designs

- Heterogeneity and/or low permeability strata
- DNAPL distribution
 - Area
 - Volume
 - Depths below grade
 - Depths below water table
- ♦ Target treatment zone
 - Location
 - Extent

- Depth to groundwater
 - And other factors influencing injection well costs
- Groundwater flow rates
- Geochemical conditions affecting
 - Bioremediation
 - Groundwater quality

Slide Courtesy ITRC

Elements of Bioremediation Injection Design

- Electron donor selection
- Delivery method
- Injection volume and concentration
- Injection frequency
- Need for bioaugmentation

Electron Donor Amendment Characteristics

- Carbon donors vary in several properties
 - Manner of hydrogen production
 - Chemical composition
 - Electron equivalents released per unit mass of amendment
 - Microbiological responses
 - Geochemical impact
 - Chemical / physical properties
 - Transport characteristics
 - Longevity

Edible Oil Emulsions

Overview of Delivery Techniques – Trenching

Trenching

- Generally used to emplace solid phase amendments (i.e. bark or mulch)
- Usually configured as one or a series of permeable reactive barrier oriented perpendicular to groundwater flow
- Installed using conventional excavation or biopolymer slurry.

Overview of Delivery Techniques – Trenching (cont.)

Advantages:

- Can mitigate uncertainty caused by subsurface heterogeneity because it allows distribution across an entire cross-section of the plume
- Can be most cost effective means to emplace large mass of amendments

- Can only be performed at shallow sites
- Not effective for delivering liquid amendments

Overview of Delivery Techniques -Fracturing

Fracturing

- This delivery technique applies high pressure to the subsurface to create cracks (fractures) in the soil
 - Hydraulic fracturing delivers a "proppant" into the fractures (such as sand) to prop them open; amendment can be mixed with the proppant
 - Pneumatic fracturing uses air or nitrogen as a carrier to deliver amendments into the fracture
- Generally used to deliver solid phase amendments

Overview of Delivery Techniques – Fracturing (cont.)

Advantages:

- Can successfully deliver amendments at low permeability sites and at sites with deep contamination
- Can actually increase the hydraulic conductivity of a formation; flow preferentially flows through fractures
- Individual fractures can be mapped, providing an accurate depiction of amendment distribution.

- Radius of influence decreases at shallower sites
- Not effective for delivering liquid amendments
- Requires specialized equipment and specialty vendors

Overview of Delivery Techniques – Injection Wells

Passive injection wells

- Standard wells installed at regular spacing used to inject amendments
- Well spacing and construction can be varied depending on goals
- Generally used to emplace aqueous amendments
- Amendments are injected and allowed to transport advectively

Overview of Delivery Techniques – Injection Wells (cont.)

Advantages:

- Can distribute large volumes of amendments over large areas with relatively few injection locations
- Standard technology readily available almost anywhere
- Can be used at sites with deep water table and at fractured rock sites, although costs may be high

- Radius of influence decreases at low permeability sites
- May not be effective at sites with low groundwater velocity
- Not effective for delivering solid amendments

Overview of Delivery Techniques – Direct Push Technology

Direct Push Technology

- Injections are performed into temporary borings created using DPT
- DPT spacing can be varied depending on goals
- Generally used to emplace aqueous amendments
- Amendments are injected and allowed to transport advectively

Overview of Delivery Techniques – Direct Push Technology (cont.)

Advantages:

- Many DPT points can be installed to inject over large areas
- Standard technology readily available almost anywhere
- Among the most cost effective techniques for delivering aqueous amendments

- Radius of influence decreases at low permeability sites
- May not be effective at sites with low groundwater velocity
- Not effective for delivering solid phase amendments
- Infeasible for deep sites or fractured rock
- Generally not efficient at injecting large volumes

Overview of Delivery Techniques – Active Recirculation

Active Recirculation

- Injection and extraction wells used to recirculate groundwater across the treatment area
- Amendment "pulsed" into extracted water
- Amendments are injected and are transported under forced advection

Overview of Delivery Techniques – Active Recirculation (cont.)

Advantages:

- Can distribute large volumes of amendments over large areas with relatively few injection locations
- Standard technology readily available almost anywhere
- Can be used at sites with deep water table and at fractured rock sites, although costs may be high
- Can distribute amendment at sites with low groundwater velocity

- Requires a significant amount of infrastructure
- O&M requirements high compared to inject and drift

	Aquifer permeability	Groundwater velocity	Aquifer matrix	Depth to contamination	Type of Substrate emplaced	Volume of Substrate emplaced	
Trenching	Any	Any	Unconsolidated	Shallow (<40 ft)	Solid	High	
Fracing	Low to moderate	Any	Unconsolidated; can work in some fracture media	Deeper than 25 ft	Solid	Low to moderate	
Passive injection	Moderate to high	Moderate to high (>0.25 ft/day)	Any	Any	Aqueous	Low to high	
DPT	Moderate to high	Moderate to high (>0.25 ft/day)	Unconsolidated	Shallow to moderate (up 50 ft)	Aqueous	Low to moderate	
Active Recirculation	Moderate to high	Low to moderate	Any	Any	Aqueous	Low to high	

Amendment Dosage

- The goal is to account for the demand imposed by all of the electron acceptors in the system
 - There is uncertainty in accurately determining or estimating the native electron donor demand
 - Typical safety factors of 5-10 or higher are commonly applied to the calculated dose to reflect the uncertainty
 - Significantly higher dosing may be used for source area applications
- Reasons for safety factors include
 - Unknown mass of electron acceptors (e.g., Fe³⁺⁾ present within the treatment zone
 - Difficulty accurately predicting electron acceptor influx over time
 - "Wasteful" microbial activity (not linked to dechlorination)

Amendment Injection Frequency

- Injection frequency depends on amendment that is being used and on type of application
 - Fast release donors may need to be injected every 4-12 weeks
 - Slow release donors may last up to two years or longer
 - Trenches/barrier application can be designed to be "recharged" with amendments
- Source area applications may require more frequent injections in order to maintain biologically active zone

Bioaugmentation

- Bioaugmentation can be used to overcome microbiological limitations at sites
- Several cultures are commercially available for chlorinated solvents
- Several options for bioaugmentation exist
 - Add electron donor and only bioaugment when a microbiological limitation is evident
 - Bioaugment at the outset in order to reduce lag times and ensure that complete degradation will occur
 - Add electron donor for a short period of time to "precondition" the aquifer

Monitoring during Operations

- Monitoring needs generally reduce as bioremediation projects progress from pilot studies to long-term operations
 - Pilot studies and initial operations will show which parameters are key at a given site
 - A "core list" of parameters still will be needed during operations, but frequency may decrease
- Some parameters may be important based on sitespecific needs (e.g. metals, co-contaminants)

Monitoring during Operations (cont.)

- Contaminants and degradation products
- Electron donor
 - ♦ COD or TOC
- Redox sensitive parameters
 - Ferrous iron
 - Sulfate
 - Methane
- Biological activity indicators and water quality parameters
 - ♦ pH
 - Alkalinity
 - Metals (site-specific basis)

Monitoring during Operations (cont.)

- EMD's can be useful during operations
- qPCR for DHC
 - commercially available and should be used during initial phases of operations
 - Location/frequency may be decreased over time
- ♦ CSIA
 - Can be useful at sites to demonstrate complete degradation is occurring
 - Probably more common during pilot studies/technology demonstration
- Others
 - Less common during operations

Summary

- Standard groundwater chemistry parameters are needed to design a bioremediation system
- EMD's are advanced diagnostic tools that can provide valuable information
- Bench scale studies can be useful but generally are not required
- Pilot studies are very useful at most sites
- Continuum of bioremediation amendments is available, with selection dependent on site conditions and remedial goals
- Amendment selection and delivery techniques are linked
- Monitoring needs generally decrease during bioremediation operations

Questions and Answers

Ryan A. Wymore CDM 555 17th St Suite 1100 Denver, CO 80202 720-264-1110 wymorera@cdm.com