The Intricacies of Really Understanding Vapor Intrusionand What This Means for Modeling

Eric Suuberg

School of Engineering, Brown University Providence, Rhode Island

Vapor intrusion involves the migration of chemical vapors in the soil and groundwater to enter buildings through foundation cracks and joints. Sometimes vapor intrusion can result in long-term exposure of contaminants at harmful levels.

- Affects maybe 1/4 of the estimated inventory of 500,000 US brownfields sites.
- At present, no general EPA guidance, though draft guidance has been prepared.
- States regulate, but often very different standards in use.
- Also jurisdictional issues who is in charge- OSHA? EPA? State?
- No agreement on site investigation practices.
- Limited use of quantitative modeling-very fieldwork based, empirical.

In environmental health risk assessment, for there to be a human health risk there must be a completed exposure pathway, involving identification of a

- Source (But what if Source Strength is Variable?)
- Migration Route (What temporal variation is possible?)
- Receptor (Confounding receptor level situations?)

 Set a maximum allowable exposure, assuming 30 years in a home, 350 days a year at home, whether children are involved...

 Set a regulatory indoor air concentration for the COC (C_{indoor})

Widely varying, workplace to residence, state to state

of alternative extrapolation models for the same experimental data. NOTE: Dose-response functions were developed for data from a benzo-[a]pyrene carcinogenesis experiment in mice conducted by Lee and O'Neill.¹¹ REUSE IN RHODE ISLAND A State-Based Approach To Complex Exposures

May get indigestion (or worse), but what was meant was "ingestion"

Keep in mind-Other exposure routes can come into play (including resident-caused exposures)

Also, can stop drinking polluted water, but replacing the 20 m³/day of air we breathe is tough.

U.S. EPA empirical "attenuation factor" approach for predicting indoor air concentrations

- Cindoor/Cgroundwater source $=10^{-4}$
- $C_{indoor}/C_{subslab} = 10^{-2} \text{ to } 10^{-3}$
- Based upon empirical observation.

Groundwater Sourcefairly conservative

Table 2. Residential screening levels for selected VOCs.

	Benzene			TCE			PCE		
State	Groundwater	Soil Gas	Indoor Air	Groundwater	Soil Gas	Indoor Air	Groundwater	Soil Gas	Indoor Air
Alaska	5	3.1	0.31	5	0.22	0.022	5	8.1	0.81
California	NA	36.2	0.084	NA	528	1.22	NA	180	0.41
Colorado	15	NA	0.23	5	NA	0.016	5	NA	0.31
Connecticut	130	2490	3.3	27	752	1	340	3798	5
Indiana	95-850	250-1400; 25-140°	2.5	4.6-700	120-2000; 2-200°	1.2-4.1	7.4-1100	320-5200; 32–520ª	3.2-10
Louisiana	2.900	NA	12	10,000	NA	59	15,000	NA	110
Maine	NA	NA	10°	NA	NA	NA	NA	NA	NA
Massachusetts	2000	NA	0.3	30	NA	1.37	50	NA	0.04
Michigan	5600	150	2.9	15,000	700	14	25,000	2100	42
Minnesota	NA	1.3-4.5	1.3-4.5	NA	NA	NA	NA	NA	20
New Hampshire	2000	95	1.9	50	54	1.1	80	68	1.4
New Jersev	15	16	2	1	27	3	1	34	3
New York	NA	NA	NA	NA	NA	5	NA	NA	100
Ohio	14	31	3.1	-	122	12.2	11	81	8.1
Oklahoma	5	3.1	0.27	5	0.17	0.017	5	0.33	0.33
Oregon	160	NA	0.27	6.6	NA	0.018	78	NA	0.34
Pennsylvania	3500	NA	2.7	14,000	NA	12	42,000	NA	36

Notes: Units are µg/L for groundwater and µg/m³ for soil gas and indoor air. See individual state guidance documents for additional information, including limitations and exceptions. Trigger or action levels for mitigation based on indoor air concentrations may be higher than the screening levels shown. ^aSecond range of values shown is for subslab soil gas. ^aChronic exposure value.

From Eklund, Folkes, Kabel, Farnum, in EM, 2007.

Data for CO, LA, CT, MA, NH, MI, PA. Henry's Law constants for benzene, TCE and PCE from EPA website, 25°C

Implication is that states with higher GW screening levels tend to look for Attenuation Factors that are greater than the EPA average when compared to indoor air screening levels (10^{-5} and 10^{-6}) are the very tail of the distribution.

REUSE IN RHODE ISLAND A State-Based Approach To Complex Exposures

Table 4. Attenuation values used in state VI guidance.

0

	Attenuation Coefficients								
State	Groundwater	Shallow Soil Gas	Deep Soil Gas	BTEX	Crawl Spaces				
Alaska	0.001	0.1	0.01	NA	NA				
California	NA	0.01 - 0.002	same as shallow	NA	0.002				
Colorado	NA	O.1 (subslab)	NA	NA	1				
Connecticut	0.001	0.001	NA	NA	NA				
Indiana	NA	subslab = 0.1 soil gas = 0.01	0.01	NA	1				
Louisiana	NA	NA	NA	NA	NA				
Maine	NA	NA	NA	NA	NA				
Massachusetts	Based on J&E model	NA	NA	Adjusted by 10x	NA				
Michigan	Based on J&E model	0.02	0.002	NA	NA				
Minnesota	NA	NA	NA	NA	NA				
New Hampshire	Based on J&E model	0.02	0.02	Groundwater values					
1 tott Hamperine				adjusted by 10x	1				
New Jersev	Based on J&E model	0.02	NA	0.002	1				
New York	NA	NA	NA	NA	NA				
Ohio	0.001	0.1	0.01	NA	NA				
Oklahoma	0.001	0.1 (subslab)	0.1 (8-10 ft)	NA	1				
Oregon	0 005	NA	NA	NA	NA				
Pennsylvania	NA	0.01	NA	NA	NA				

For example, a 2000 μ g/L screening level for benzene in groundwater, would imply roughly a 40 μ g/m³ indoor air criterion, at an AF of 10⁻⁴.

The RIDEM GW GB cleanup standard for benzene is 140 µg/L, which translates to a 1.4 µg/m³ effective average indoor standard, based upon EPA average AF.

Even Henry's Law can be a challenge...So what is

Cgroundwater source?

Shallow groundwater temperatures (Collins, 1925)

Washington, 1996

(including at the source).

(EPA)

level (benzene, carbon tetrachloride, chloroform, methylene chloride, PCE)

 Several others exceed 10⁻⁶ risk levels about 10% of time (1,2-DCA, TCE, vinyl chloride)

Lowell and Eklund, 2004

Echoed in various guidance documents, but challenged by Abreu and Johnson, 2005 for homogeneous soils.

How close should GW Source measurements be?

Yao et al. *Vadose Zone Journal*,2013

Subslab to Source Concentration

Unusually high source to slab attenuation can have an origin in GW sources that are not really that "close"

Consider 2 m deep basement, 4 m deep source, sampling GW at r= 5 i.e., 20 m away, can lead to significant extra attenuation

The Issue of Transients

Sample data from a 2013 AEHS Conference Workshop by Schumacher et al. Samples from a duplex in Indianapolis.

Note the wide variability over short sampling times.

Correlation with Radon not particularly good.

Seasonal variability in indoor air higher than in subslab.

- Essential to consider background concentrations (and to measure or at least use current estimates).
- How close should a GW monitoring well be, to be reliable?
- There needs to be the awareness of transients, some very short term, some seasonal, and some very long time scale.