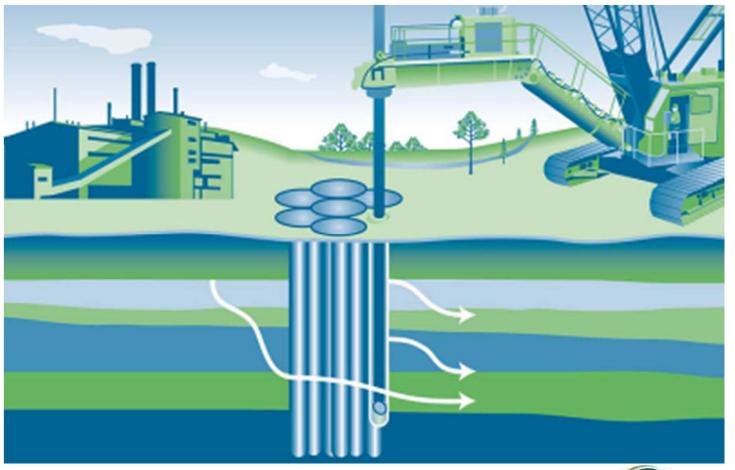


Solidification/Stabilization NEWMOA Presentation

Rajesh (Raj) Singh, P.E. Kleinfelder, Exton, PA April, 2015


> KLEINFELDER Bright People. Right Solutions.

Presentation Outline

- Technology Overview
- Performance of S/S Treated Material
- Treatability Testing
- Implementation
- Long-Term Stewardship
- ► Q &A

Solidification/Stabilization

ITRC S/S Survey – S/S

- Inconsistent criteria for development of performance specifications
- Uncertainties associated with prediction of long-term performance
- Lack of methodologies for measure of longterm compliance

* **ITRC** is a state-led national coalition dedicated to reduce barriers to the use of innovative environmental technologies that reduce compliance costs and maximize cleanup efficacy.

Solidification/Stabilization (S/S)

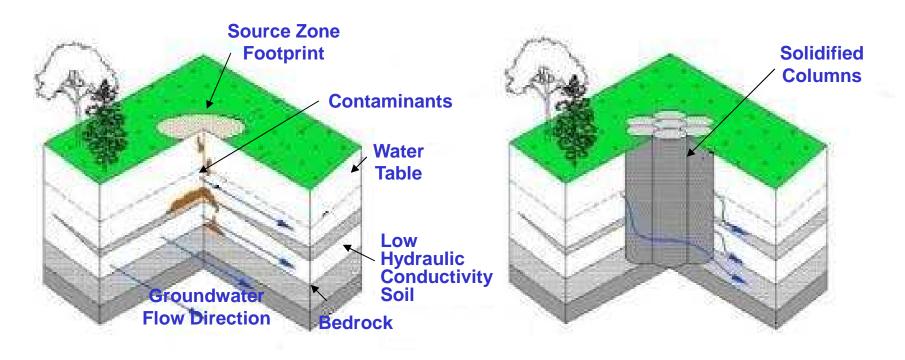
Solidification

- Entrap contaminants within a solid matrix
- Coating of contaminant molecule
- Organics are generally immobilized due to reduced hydraulic conductivity
- Stabilization
 - Bind or complex contaminants
 - May involve chemical transformation
 - Metallic contaminants are stabilized by precipitation or by interaction (e.g. sorption) with cement matrix
- ► Example: Lead $Pb(HCO_3)_2+CaSO_4.2H_2O \rightarrow PbSO_4 (s)+CaCO_3+3H_2O+CO_2$

Cement-Based S/S Technology

Solidification

Process forms a granular or monolithic solid that incorporates the waste material


A solid matrix, calcium-silicate-hydrate (C-S-H) is formed in presence of water

Cement Hydration Reaction (Thomas, 2004):

- Reduces mobility of chemicals of concern
- Increases strength
- Reduces permeability
- Minimizes free liquid

S/S Technology Process

Before S/S

After S/S

S/S Transformation of Waste Material

S/S Treatment Strength Hydraulic Cond. Leachability

Oily Untreated Soil

S/S Treated Soil

Retention of Contaminants in S/S Materials

S/S remedy does not remove contaminants

- Chemically and physically retained in material with improved characteristics
 - Inorganic Contaminants
 - Stabilized by alkalinity
 - Adsorbed to mineral surfaces
 - Incorporated into mineral structure
 - Organic Contaminants
 - Partitioned with solid organic phases
 - Adsorbed to mineral surfaces
 - Absorbed by certain additives

MAECTITE®

- Proprietary Process uses Apatite (phosphate)and sulfate for S/S
- Apatite (Calcium Phosphate) is natural mineral containing high level of phosphate and can be used for S/S of metals – crystalline and low solubility
- Apatite $Ca_{10-x}Na_x(PO4)_{6-x}(CO_3)_x(OH)_2$
- Apatite II fish bone waste Soluble phosphate induced metal stabilization - hydroxyapatite and mixed-apatite-barite minerals
- End product is hard mineral that is resistant to acidity and degradation.

EPA-542-R-07-012

PA-542-R-07-	012	number	verofestores	s marine ns ormalie nuoratie nuoratie	enerolue enerolue enerolue	npounds estimite hornalo	Ashic Pesti Ashic Pesti Janic Other	statile sides and he shacomponents shacomponents satic components satic components	stoicides stoicides stoicides stoicenivolation stoiced volation stoiced vo	he horinaled horinaled horinaled horinaled
Technology	1013	20 Y	Ndr Out	ELL AST	er our	Sal. Or	Sa Chi	Sar Hard	an Poup	Menetar
Bioremediation	113	37	51	33	33	24	17	22	2	5
Chemical Treatment	29	1	2	3	4	1	4	12	4	13
Multi-Phase Extraction	46	9	3	11	6	4	8	18	1	1
Electrical Separation	1	0	0	0	0	0	0	1	0	0
Flushing	17	3	5	5	5	1	3	11	0	5
Incineration	147	27	41	33	23	36	34	52	36	6
Mechanical Soil Aeration	7	0	0	3	1	0	1	7	0	0
Neutralization	15	2	0	0	0	0	0	0	0	6
Open Burn/				1.00		-				11.001
Open Detonation	4	0	1	0	0	0	0	0	0	0
Physical Separation	21	4	2	1	0	3	0	0	4	5
Phytoremediation	7	1	2	2	2	1	1	4	0	4
Soil Vapor Extraction	255	15	31	107	51	3	33	217	1	0
Soil Washing	6	1	1	0	0	2	0	0	1	2
Solidification/ Stabilization	217	17	18	13	13	16	7	20	35	180
Solvent Extraction	4	2	1	0	1	1	0	2	2	1
Thermal Desorption	71	21	17	24	15	8	12	33	16	0
In Situ Thermal Treatment	14	5	0	2	0	3	3	8	0	0
Vitrification	З	0	0	1	1	0	1	3	2	1
Total Projects	977	145	175	238	155	103	124	410	104	229

S/S Technology Challenges

- Contaminants are not destroyed or removed
- Uncertainties associated with prediction of long-term performance
- Volume increases in the treated mass may require management
- Options for treatment or posttreatment modifications limited
- Requires removal of debris or underground obstructions prior to treatment

S/S column

S/S Technology Advantages

- Effective in treating many contaminants
- Applicable for in situ or ex situ treatment
- Treatment period relatively short
- Can improve structural property of soil
- Can be applied in dry or wet conditions
- May be more cost-effective than off-site disposal

Former manufactured gas plant (MGP) site in Cambridge, Massachusetts

Applicability to Organics Contaminants

ITRC S/S-1: Table 2-1. Documented Effectiveness of S/S Treatment Chemical Groups

Contaminants	EPA 1993/2009	Other Refs
Halogenated VOCs, Non- Halogenated VOCs (i.e. solvents, aromatics)	No documented effectiveness	Pre-treat volatiles
HSVOCs, N-HSVOCs (i.e. chlorinated benzenes, PAHs)	Documented effectiveness	Pre-treat volatiles
PCBs, Pesticides	Documented effectiveness (in 2009 document)	
Dioxins/Furans	Potential effectiveness	Demonstrated effectiveness
Organic Cyanides, Organic Corrosives	Potential effectiveness*	Demonstrated effectiveness
Pentachlorophenol, Creosotes, Coal Tar, Heavy Oils	Not evaluated	Demonstrated effectiveness

Bright People. Right Solutions.

* effectiveness not evaluated in EPA for 2009, therefore assumed to be same as 1993 evaluation

Applicability to Inorganic Contaminants

ITRC S/S-1: Table 2-1. Documented Effectiveness of S/S Treatment Chemical Groups

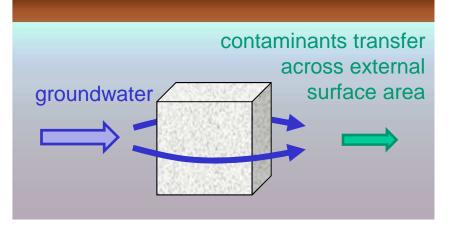
Contaminants	EPA 1993/2009	Other Refs
Volatile and Non-Volatile Metals	Documented effectiveness	
Asbestos	Documented effectiveness*	
Radioactive Materials	Documented effectiveness*	
Inorganic Corrosives, Inorganic Cyanides, Mercury	Documented effectiveness*	
Oxidizers, Reducers	Documented effectiveness*	

* effectiveness not evaluated in EPA for 2009, therefore assumed to be same as 1993 evaluation

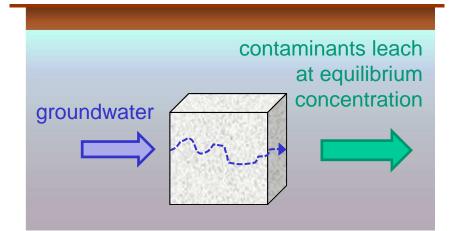
Commonly Used Additives/Reagents

- 1. Ferrous sulfate, sulfides, sodium metabisulfite, calcium polysulfide, sodium hydrosulfite, ferrous chloride, phosphoric acid, triple super phosphate
- 2. Lime, Portland cement, soda ash, fly ash, sodium hydroxide, magnesium hydroxide, blast furnace slag
- 3. Soluble silicates (sodium or potassium)
- 4. Clays, organophilic clays, bentonite
- 5. Activated carbon, zeolitic materials

Three Key Performance Parameters


Strength

- Increased strength withstand overlying loads
- Hydraulic Conductivity
 - Reduce Hydraulic Conductivity manage water exposure
- Leachability
 - Reduce contaminant solubility/leaching retain contaminants



Why is Relative Hydraulic Conductivity Important?

$K_{S/S} << K_{soil}$

- Water is diverted around material
- Exposed surface area limited to external surface
- Contaminant release rate controlled by Rate of Mass Transfer

- Water percolates through material
- Continuous pore area exposed
- Release concentrations based on Liquid-Solid Partitioning (local equilibrium)

Contaminant release under equilibrium conditions will always be greater than under mass transfer conditions.

Leaching Assessment Tests

- <u>TCLP</u> Method 1213, Ground, Acid, RCRA Characteristics, Landfill Disposal, Equilibrium Controlled
- <u>SPLP</u> Method 1312, Ground, Acid Rain, Acceptable for ISS, Equilibrium Controlled
- <u>ANS 16.1</u> Whole, Water, Nuclear Waste, Up to 90 days, Diffusion Controlled
- <u>LEAF Methods EPA Method 1315</u> Similar to ANS 16.1, DI Water, Inorganics/Organics, Diffusion Controlled, Draft ASTM method.

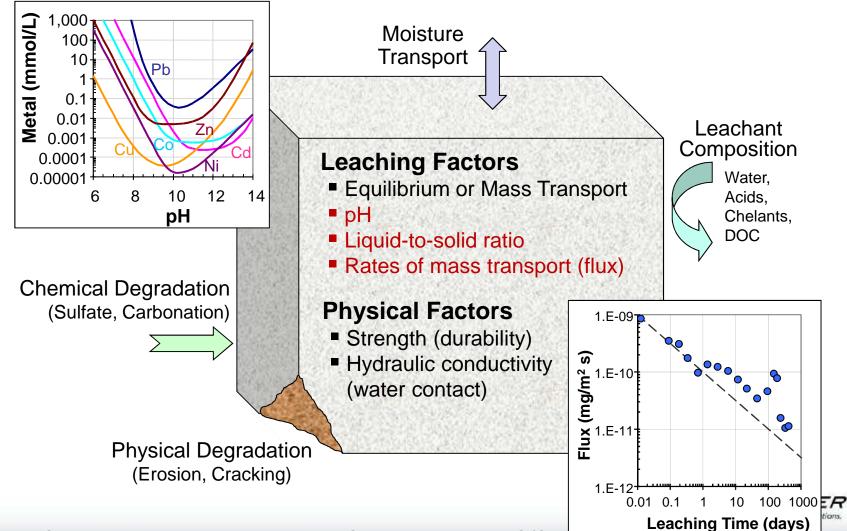
Leaching Environmental Assessment Framework (LEAF)

LEAF consists of:

- Four leaching test methods
- Data management tools
- Assessment approaches

Provides a material-specific "source term" for release

- Demonstration of treatment effectiveness
- Release estimation
- Fate and transport modeling
- Leaching tests define characteristic leaching over a broad range of release-controlling factors



LEAF Test Methods

Method 1313 –	Liquid-Solid Partitioning as a Function of Eluate pH using a Parallel Batch Procedure
Method 1314 –	Liquid-Solid Partitioning as a Function of Liquid-Solid Ratio (L/S) using an Up-flow Percolation Column Procedure
Method 1315 –	Mass Transfer Rates in Monolithic and Compacted Granular Materials using a Semi-dynamic Tank Leaching Procedure
Method 1316 –	Liquid-Solid Partitioning as a Function of Liquid-Solid Ratio using a Parallel Batch Procedure

Factors Influencing S/S Material Leaching Performance

Ref – ITRC Development of Performance Specifications for S/S

Treatability Studies Objectives

- Develop S/S formulation to meet project objectives
- Determine impact of selected reagents on contaminants
- Optimize the reagents/admixtures dosages
- Assess contaminant emissions
- Finalize material handling criteria
- Determine physical and chemical uniformity of the material
- Determine the volume increase
- Finalize construction parameters and performance criteria

Bench and Pilot-Scale Treatability Testing

- Bench-scale- provides important information
- Pilot-scale confirms the full-scale approach
- Selection of candidate reagents requires knowledge of:
 - Process track record
 - Interference and chemical incompatibilities
 - Metals chemistry
 - Compatibility with disposal or re-use
 - Cost

Bench-Scale Laboratory Testing



Untreated Sample in the Field

Sample Collection

Sample Characterization

S/S Sediment Sample

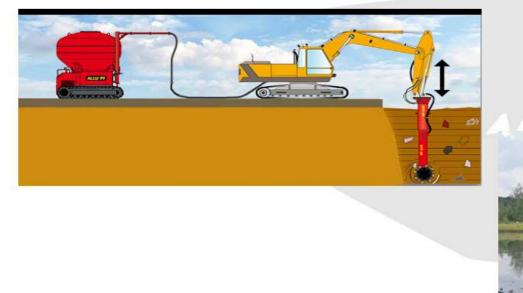
KLEINFELDER Bright People, Right Solutions.

Treatability Testing Evaluation

Key Performance Parameter	Performance Measurement	Example Criteria
Strength	Unconfined Compressive Strength	344.7 kN/m2 (50 psi) to 689.4 kN/m2 (100 psi)
Hydraulic Conductivity	Hydraulic Conductivity	5x10 ⁻⁶ to 1x10 ⁻⁶ cm/sec (relative K)
Leachability		
	Site conceptual model Remedial goals Risk-based limits % leaching reduction MCL or other goals Point of compliance	* With promulgation of LEAF Tests, these values will need to be based on data available from testing.

Implementation

- Performance verification during implementation
- Sampling and testing considerations
- Test data evaluation
- Long-term performance considerations

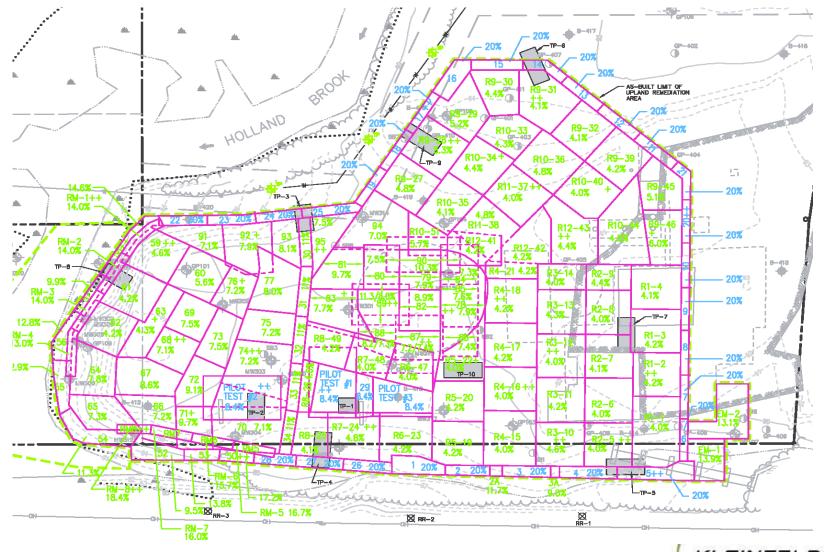


In-Situ Mixing System

Horizontal Axis Insitu Mixers

One Step Ahead

Copyright © Allu Oy. All rights reserved.


04/26/2007

ille.c.

Documenting Mix Cells and Test Data

KLEINFELDER Bright People. Right Solutions.

Long-Term Stewardship

- Long-Term Durability
- Groundwater Monitoring
- Institutional and Engineering Controls
- Land Use
- Community Concerns

Long-Term S/S Performance

Properly designed S/S remedies can be expected to last on the order of decades to centuries. Success tied to remedial goals!

- Research studies have been conducted to evaluate the long-term performance of S/S remedies.
 - PASSiFy project
 - EPRI study
 - Other literatures

EPA has used S/S effectively on many sites.

Long-Term Performance Assessment Studies – PASSiFy

- Performance Assessment of Solidified/Stabilized Waste Forms – PASSiFy, 2010, Largest Study
- Ten ISS sites (1989 2004) in 3 countries USA, UK, and France
- Strength, permeability, leaching, microstructure investigation, modeling, MINTEQ, etc.
- Properties of the treated material typically did not change significantly
- Continue to meet the original remedial goals
- Affirms the viability of S/S as an effective long-term treatment technology.

Long-Term Performance Assessment Studies – EPRI Study

- Evaluation at a former MGP site 10 years after S/S implementation
- Testing geotechnical, chemical, leaching, and solidphase geochemical analyses, F &T modeling.
- Treated contaminated material was meeting the performance criteria as designed
- Contaminant concentrations at point of compliance were predicted to continue meeting performance criteria for at least 10,000 years

Key Points

- S/S treatment has demonstrated long-term effectiveness for a number of contaminants
- Performance specifications critical for S/S
- Treatability studies assess S/S treatment feasibility
- QA/QC, consistency, and compliance testing during implementation
- Long-term stewardship typically used with S/S

Key Points

- ISS is a permanent remedy
- ISS reduces potential risk of groundwater impact
- ISS eliminates direct contact risk
- ISS supports future use of the site
- Typical cost of ISS ranges from \$65 to \$110 (including dewatering)

References/Resources

http://www.clu-in.org/conf/itrc/SS/resource.cfm

Review of scientific literature on the use of stabilisation/solidification for the treatment of contaminated soil, solid waste and sludges, https://www.gov.uk/government/uploads/system/ uploads/attachment_data/file/290656/scho0904bi fp-e-e.pdf

© MARK ANDERSON

WWW.ANDERTOONS.COM

"We're still not sure what happened here, but I think we can all agree that we're glad it's over."

THANK YOU

QUESTIONS

