

When is the use of In situ Capping Appropriate?

In general cap is a reasonable option under the following conditions:

- Low groundwater flux
- Lower velocity flows/lower susceptibility to erosion
- Site contaminants will remain stable after burial
- Deeper water bodies- no impacts to navigation, limited flood storage loss
- Small portion of a water body (minimal flood storage loss)
- RGs are not attainable via removal
- Area to be capped has a generally level bottom

Poor Candidates for Capping

- Shallow environments
 - Littoral zones—capping would create emergent conditions
- High erosion potential
- Flood prone areas
- High groundwater flux with dissolved contaminants

Common Concerns about In-Situ Sediment Capping

- Increased truck or rail traffic
- Loss of resource/harvesting opportunities
- Increased flooding
- · Disturbance of aquatic habitat
- Cap material source issues
- Loss of boat anchoring access
- Doubts about effectiveness due to cap erosion, disruption, or contaminant migration through cap
- Loss of privacy during construction
- · Recreation and tourism impacts during construction
- Property value/transferability concerns with leaving significant contamination in place

Before you Cap...

- · Understand additional sources of recontamination
 - CSOs
 - Upstream sources
 - Maintain a "Watershed View"
- Understand site hydrodynamics
 - Seasonal variability
 - Storm effects
 - · Sediment stability
 - Groundwater discharge
- Biogeochemistry

EPA's Emphasis on Source Control

- Principles for Managing Contaminated Sediment Risks at Hazardous Waste Sites (2002):
 - Principle #1: CONTROL SOURCES EARLY
- Contaminated Sediment Remediation Guidance for Hazardous Waste Sites (2005):
 - "Identifying and controlling contaminant sources typically is critical to the effectiveness of any Superfund sediment cleanup." (p. 2-20)
 - "In most cases, before any sediment action is taken, project managers should consider the potential for recontamination and factor that potential into the remedy selection process." (p. 2-21)

Sediment Capping Site	Date of Cap	Recontamination source
Anacostia River DC	2004	Urban sources, upstream sources
Convair Lagoon, CA	1998	Public storm drain discharges
Denny Way Site, WA	1990	CSO point source discharges
Eagle Harbor Site, WA	1994	"surface sources "offsite sources"
Long Beach North Energy	2001	"deposition from surrounding
sland Borrow Pit, CA		harbor"
Pier 51 Ferry Terminal, WA	1989	PAHs due to pile pulling, metals from sediment deposition
Pier 53-55, WA	1992	Prop wash resuspension near edges; PAHs due to pile removal
Pier 64-65, WA	1994	Piling repair work released creosote

<section-header><section-header><list-item><list-item><list-item><list-item>

Other considerations

- Cap design
 - · Geotechnical properties of sediment
 - Compressibility
 - Resuspension potential
 - Need for geotextile
 - Granular cap composition
 - Grain size
 - Organic carbon content
 - Armoring
 - Bioturbation
 - Gas generation
 - Need for active/reactive component

Sediment Cores

- Cores of the cap can be used to:
 - evaluate cap thickness
 - extent of cap contamination during placement

Active/Reactive Caps

- Different cap constituents being evaluated or considered:
 - Clays (e.g., bentonite) for permeability control
 - · Activated Carbon or other carbon sequestration agent
 - Organoclays for NAPL control & some dissolved control
 - Clay and sequestration agent mixtures
 - Phosphate additives for metals
 - Iron Sulfide for Hg and MeHg control
 - Siderite (FeCO3) for pH control
 - Zero valent iron
 - Oxygen or hydrogen release compounds/technologies
 - Biopolymers
 - · Electrochemical controls on redox conditions Speculative

Reactive Core Mat (RCM) Case Study

 Cetco[®] RCM with Organoclay[®] absorbent

Organoclay

Absorbent: sequesters NAPL and dissolved phase organics

Thin: less than ½ inch thick

<section-header><section-header><image><image><image>

Monitoring Results

6 MONTHS: JUNE 2009

HEM analysis indicates less than 5% absorbent capacity exhausted

12 MONTHS: OCT 2009

Again, less than 5% exhaustion; however a color difference is noted.

Useful Links Contaminated Sediment Remediation Guidance for Hazardous Waste Sites: http://www.epa.gov/superfund/health/conmedia/sediment/pdfs/guidanc e.pdf Great Lakes Contaminated Sediment Program Guidance for In-Situ • Subaqueous Capping of Contaminated Sediments : http://www.epa.gov/glnpo/sediment/iscmain/index.html#TOC Superfund Sediment Resource Center: . http://www.epa.gov/superfund/health/conmedia/sediment/ssrc.htm SMWG website: www.smwg.org Active Capping resources: Dr. Danny Reibles Research Group @ University of Texas http://www.caee.utexas.edu/reiblegroup/downloads.html

In situ Capping Summary

- Conventional granular caps are readily implemented and are effective at
 - Reducing exposure by physical separation of organisms from contaminants
 - Contain contaminated sediments from further migration
 - Minimize contaminant migration
- Active caps can also be designed and implemented for sites with
 - · NAPL in sediments subject to migration/seeps
 - · dissolved contaminants subject to migration

