Rubberized Asphalt in Pavement Preservation & Construction

NEWMOA Workshop

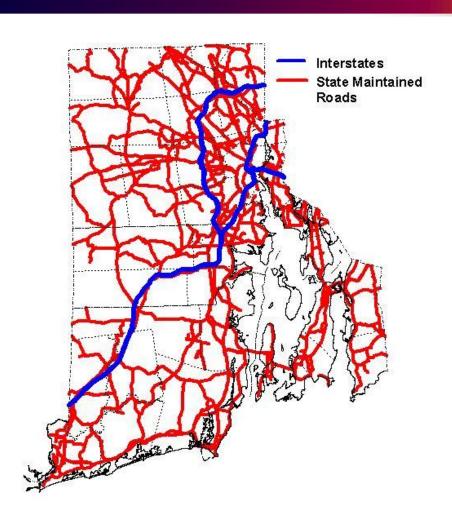
April 9, 2019

Hartford, CT

Presentation Outline

- 1) Introduction
- 2) RIDOT Experience with Crumb Rubber Asphalt
- Pavement Preservation/Construction Experience
- 4) Crack Sealing w/Crumb Rubber Asphalt
- 5) Chip Sealing w/Crumb Rubber Asphalt
- 6) Thin Overlay w/Crumb Rubber Asphalt

Pasong Financial Washington Denistron De


Rhode Island

RIDOT Highway Data (2018) - RI

	RI
Area (Thousand sq. mi.)	1
Population (Million)	1
Daily VMT (Million)	23
All Road Miles (Thousand)	6.4
SHA	1.1
Other	5.3
SHA ROADS	
Miles (Thousand)	1.1
Lane Miles (Thousand)	3
Daily VMT (Million)	19
BRIDGES	
Total Bridges	773
Deficient Bridges (%)	24
SHA Bridges	603
SHA Bridges (%)	60
STATE FUNDING (\$Million)	
Total (RIDOT)	677
Capital Outlay (Pavement)	68
Maintenance (Pavt. Preserv.)	7.2

RIDOT Maintained Roads

Background - RIDOT's Experience with Crumb Rubber

- 1987 Demo Project with Plusride
- 1991 ISTEA National Mandate Research with crumb rubber asphalt
- 1999 to 2019 Crumb rubber asphalt used in Pavement Preservation/Construction Program
 - Crack Seal
 - Chip Seal
 - Modified Asphalt Thin Overlay
 - Rehabilitation
- 2005 Use of crumb rubber with warm asphalt technology in Rubber Chip Seal

Plusride Project — Crumb Rubber Aggregate

- Year Placed 1987
- Location Rt. 2 in East Greenwich
- Mix Details
 - AC 8.2%
 - Rubber 3.5%, max nominal size ¹/₄"
 - Aggregate 88.3%
- Layer Thickness 1.5"
- Performance Ravelling of Rubber and Aggregate within 5 years.

Conclusion: Not Effective Treatment

1991 - ISTEA Mandate - Research

- Research at URI on crumb rubber asphalt binder using Arizona Wet Process SuperPave Binder Specification
- PG binder range of virgin asphalt extended
 2 to 3 grades
- Mixture testing indicated rutting would be mitigated

1999-2005 Pavement Preservation

- Worked with Hudson/All States Asphalt to incorporate the chemically modified crumb rubber asphalt (CMCRA) into the following
- Crack seal Low viscosity CMCRA w/fibers
- Chip Seal Used CMCRA in demo sections with chip seal (requires less rubber)
- Elastomeric Mix Used CMCRA binder to produce crack resistant mix
- Also used in department's construction overlay program

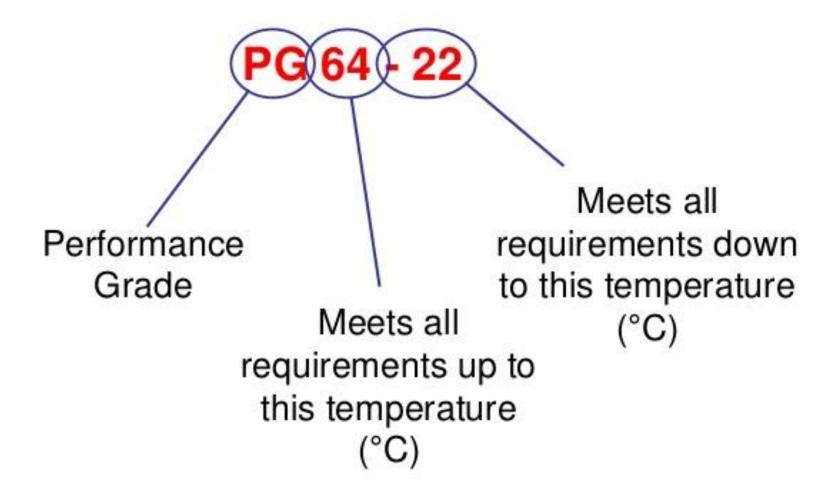
New Generation of Chemically Modified Crumb Rubber Asphalt (CMCRA)

Enhanced chemical bond between asphalt and crumb rubber molecules due to addition of chemical bonding agent

- Improves both ends of the binder PG grade (most importantly at the low end)
- Improves elastic properties (Elastic Recovery Test)
- Improves separation characteristics

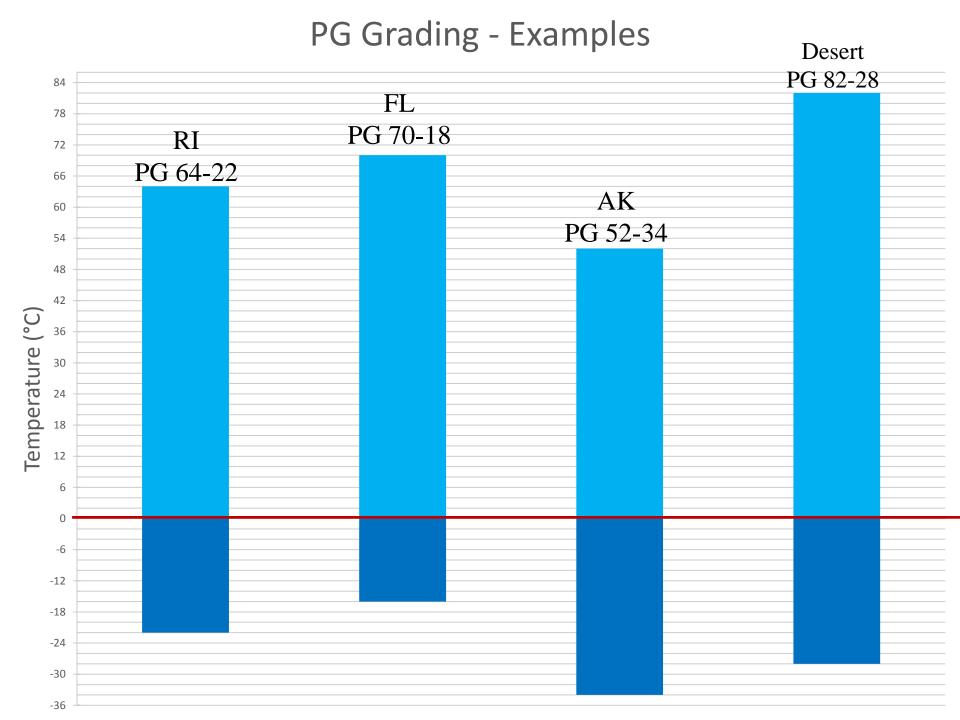
Terminal blending is required to provide a consistent quality mix

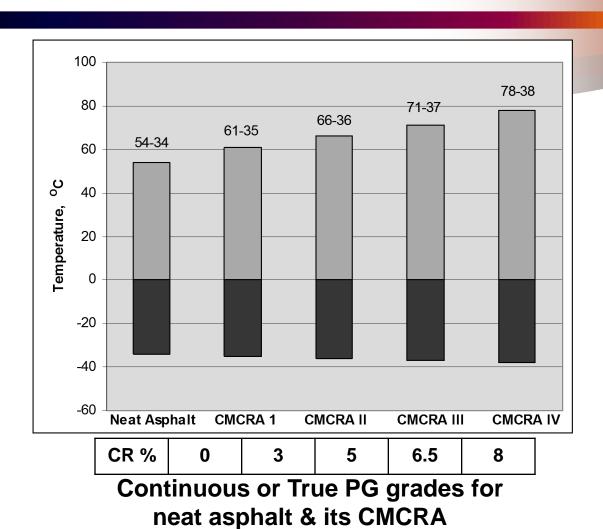
Paver-Placed Elastomeric Surface Treatment — New Technology



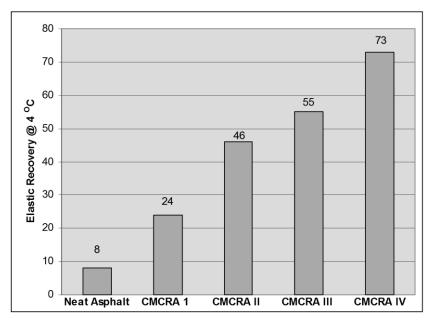
PG ASPHALT & CMCRA

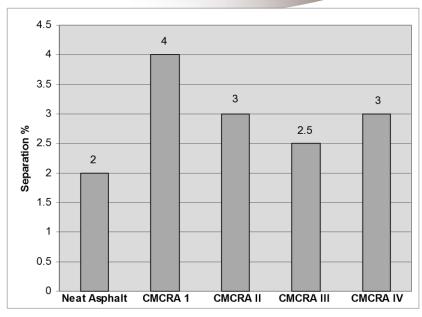
PG Binder Specifications


The PG grading system is based on Climate


Performance Grades M320 Table

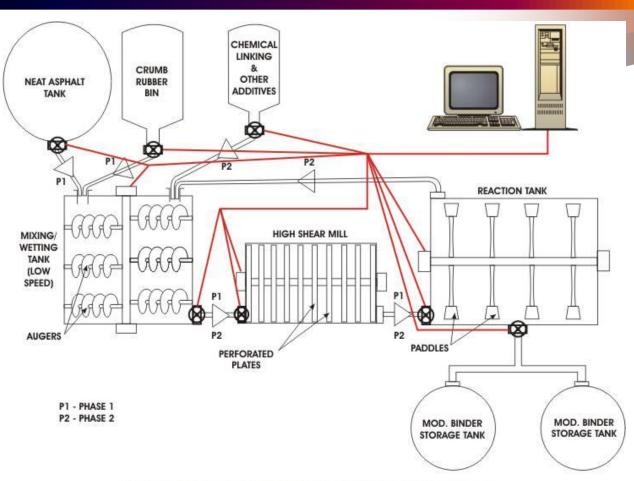
Avg 7-day Max, °C 1-day Min, °C	PG 46	PG 52	PG 58	PG 64	PG 70	PG 76	PG 82	
ORIGINAL								
≥ 230 °C	(Flash Point) FP							
≤ 3 Pa·s ® 135°C	(Rotational Viscosity) RV							
<u>≤12</u> > 1.00 kPa	(Dynamic Shear Rheometer) DSR G*/sin 8							
≥ 1.00 KPa	46	52	58	64	70	76	82	
	(ROLLING THIN FILM OVEN) RTFO Mass Loss ≤ 1.00 %							
SI⊇ > 2.20 kPa	(Dynamic Shear Rheometer) DSR G*/sin 8							
	46	52	58	64	70	76	82	
		PRESSURE AC	SING VESS	EL) PAV				
20 Hours, 2.07 MPa	90	90 100	100	100 (110)	100 (110)	100 (110)	100(110)	
€ < 5000 kPa		(Dynamic	Shear Rheome	eter) DSR G*s	in 8	1000		
	10 7 4 25 22 19 16 13 10 7 25 22 19 16 13 10 7 25 22 19 16 13 31 28 25 22 19 16 34 31 28 25 22 19 37 34 31 28 25 40 37 34 31							
S ≤ 300 MPa m ≥ 0.300	(Bending Beam Rheometer) BBR "S" Stiffness & "m"-value							
Popert Value	-24 -30 -36 0 -6 -12 -18 -24 -30 -36 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24 -30 0 -6 -12 -18 -24							
Report Value ≥ 1.00 %	(Bending Beam Rheometer) BBR Physical Hardening							
0 00	(Original Principle)							
	-24 -30 -36	0 -6 -12 -18 24 30 -36	6 12 18 24 30	0 -6 -12 -18 -24 -30	0 6 12 18 24 30	0 6 12 18 24	0 -6 12 18 24	


	Performance Grade	PG64							
		10	16	22	28	34	40		
Climatic Conditions	Average 7-day maximum pavement design temperature °C	< 64							
Conditions	Minimum pavement design temperature, °C	>-10	a - 16	> .22	> .28	> -34	> .40		
		Original binder							
	Flash point temp, T48, minimum °C	230							
	Viscosity, T 316:	135							
	maximum 3 Pa.s, test temp, *C								
-	Dynamic shear, T315; (G'/sin δ), minimum	64							
Rutting	1.0 kPa, test temp@10 rad/s, °C								
		Rolling Thin film Oven Residue (T240)							
	Mass change, maximum, %	1.0							
	Dynamic shear, T315: (G'/sin δ), minimum	64							
	2.2 kPa, test temp@10 rad/s, °C								
		Pressure Aging Vessel Residue (R28)					₹28)		
	PAV ageing temperature	100							
Fatigue -	Dynamic shear, T315; (G' · sin δ), maximum	31	28	25	22	19	16		
·	5000 kPa, testtemp.@10 rad/s, °C								
			,						
Brittle	Creep stiffness, T313:S, maximum 300 MPa,	0	-6	-12	-18	-24	-30		
Fracture	m-value, minimum 0.3, test temp @ 60s, °C								
*	Direct tension, T314. Failure strain, minimum	0	-6	-12	-18	-24	-30		
	1.0%, test temp @ 1.0mm/min, °C	l	<u> </u>	<u> </u>		<u> </u>			



Crumb Rubber Asphalt - PG Grades

Crumb Rubber Asphalt — Elastic Recovery and Separation


CR %	0	3	5	6.5	8
------	---	---	---	-----	---

CR % 0 3 5 6.5 8

Elastic recovery of neat asphalt & its CMCRA @ 4°C+

Separation results for neat asphalt & its CMCRA

Crumb Rubber Asphalt Manufacturer Terminal Blending

CRUMB RUBBER ASPHALT BLENDING SCHEMATIC (Not to Scale)

Crumb Rubber Asphalt Terminal Blending with Automation

RIDOT

Pavement Preservation Program (P³) using Asphalt Rubber 1998 - Present

Pavement Preservation Treatments

- Rhode Island experience to date
 - ✓ Crack Seal/Rout and Seal w/Crumb Rubber Asphalt
 - Microsurfacing
 - ✓ Rubberized Chip Seal w/Crumb Rubber Asphalt
 - Paver-Placed Surface Treatment
 - ✓ Elastomeric Mix w/Crumb Rubber Asphalt
 - ✓ Combination Cape Seal/SAMI w/Crumb Rubber Asphalt
 - Whitetopping (Concrete Intersections)
 - ✓ = Contains Asphalt Rubber

Crack Sealing — Definition

- Crack Seal Blow clean and heat crack; fill and overband with fiber and chemically modified crumb rubber asphalt
- Rout and Seal Grind out and heat crack; fill with fiber and chemically modified crumb rubber asphalt

Crack Seal Material Composition

- A) Hot Applied ASTM 6690 Type II Pre-packaged Block Sealer
- B) Chemically Modified Crumb Rubber Asphalt*

 Neat Asphalt PG 58 XX

 Crumb Rubber Minimum 5%, 80 mesh

 Chemical Bonding Agent

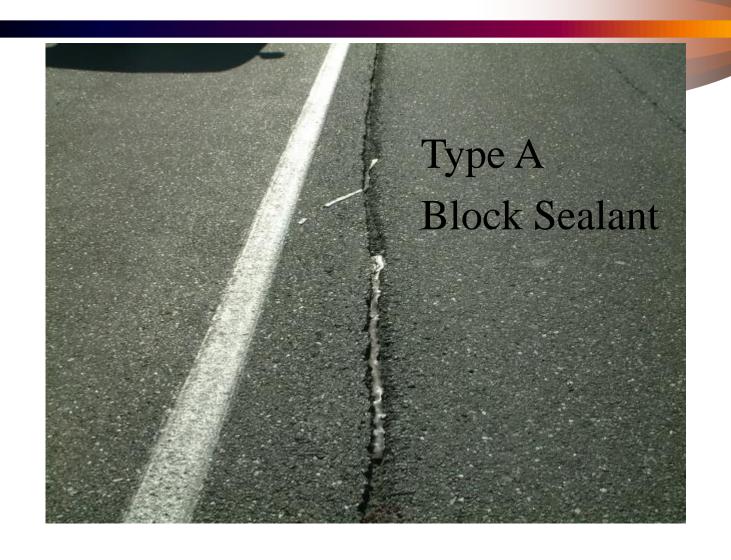
 Blend AC PG 70-34/64-34, Visc. 3 Pa·s @ 300°F

 Fibers 10 mm length polyester, 15 dpf

*Terminal Blend

Crack Sealing — Heating Kettle

Crack Sealing — Preparation (Hot Air Lance)


Crack Sealing — Sealing Operation

Crack Sealing Block Sealer — Failure

Crack Sealing Block Sealer — Failure @ 3-4 Years

Crack Sealing CMCRA — Performance @ 3 Years

Crack Sealing

- RIDOT Crack Seal Usage (2014 2018):
 - 16,333,500 Linear Ft
 - 757 tons

Rubberized Asphalt Chip Seal (RACS) — Description

The RACS binder is a blend* of 20% crumb rubber (#20 mesh) and asphalt. RACS is hot spray-applied at the rate of 0.6 gallons per square yard. Then covered with Single Size 3/8" or 1/2" precoated stone, followed by rolling.

- Flexible Good for moderately cracked roads.
- Relatively easy/fast to apply
- Ideal for cold wet climates
- Other unique applications
- *Terminal Blend

Rubberized Asphalt Chip Seal Material Composition

- Neat Asphalt PG 58 28
- Rubber Size #20 sieve
- Rubber % 20 ± 3
- Aggregate Size $-\frac{1}{4}$ " to $\frac{1}{2}$ " (single size)
- Aggregate Coating 100% coating w/PG 58 - 22

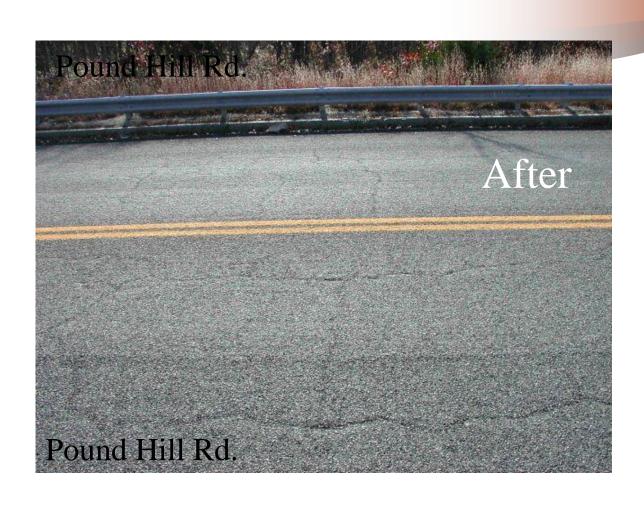
Rubberized Asphalt Chip Seal Prep - Shim and Crack Seal

Rubberized Asphalt Chip Seal — Completed Treatment

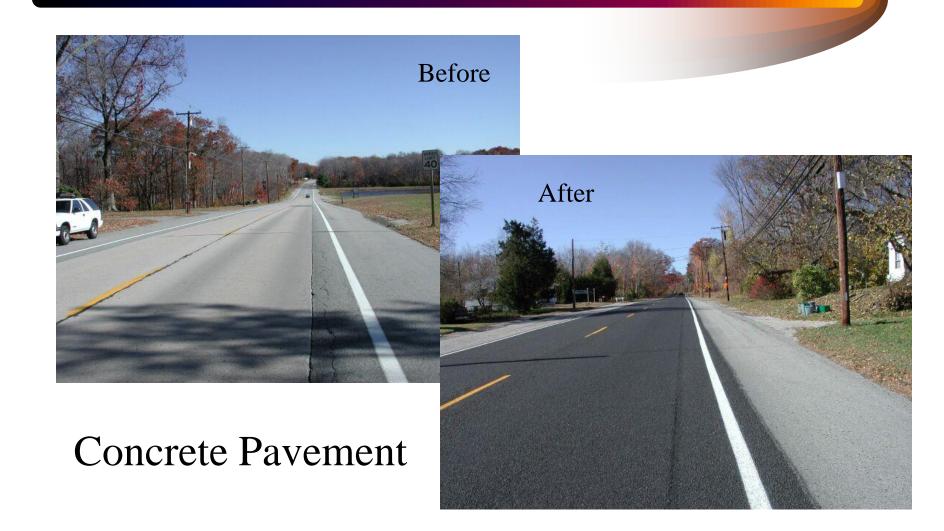
Rubberized Asphalt Chip Seal — Sprayer

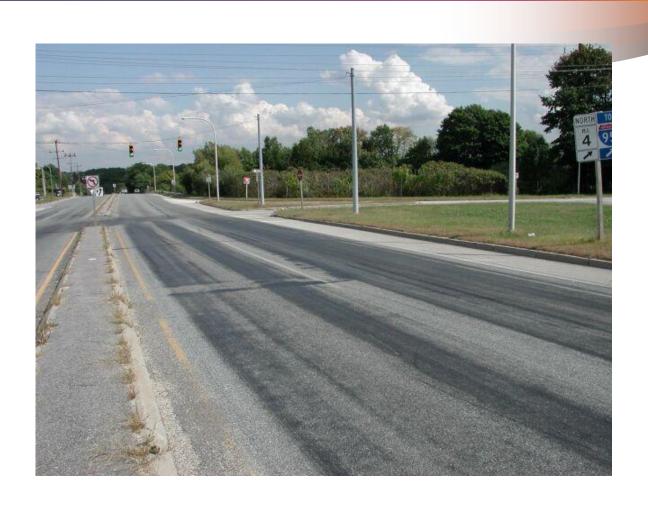
Rubberized Asphalt Chip Seal — Chip Spreader

Rubberized Asphalt Chip Seal — Rolling

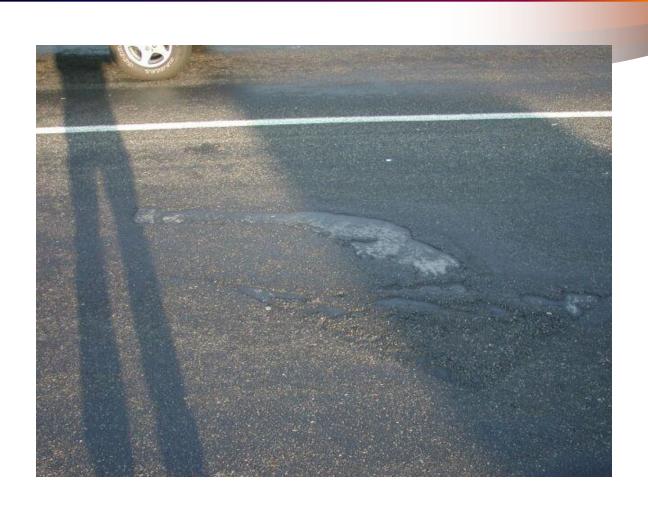

Rubberized Asphalt Chip Seal Suspension Bridge Deck — Unique Applications

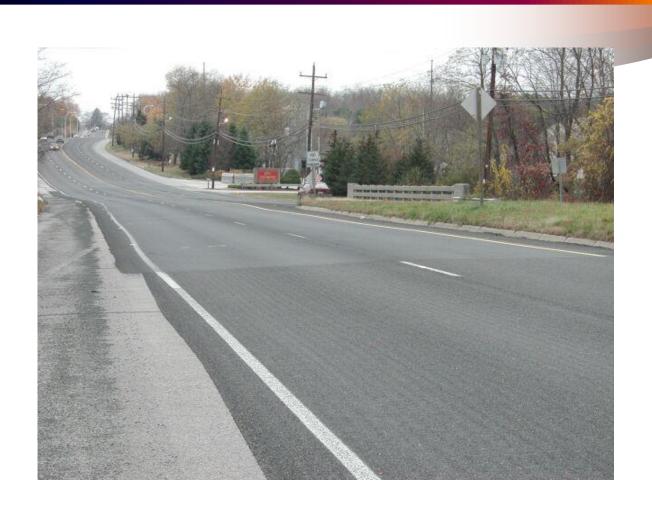

Rubberized Asphalt Chip Seal Failed Pavement Fix — Unique Applications


Rubberized Asphalt Chip Seal — Unique Applications


20 Years Later

Rubberized Asphalt Chip Seal — Unique Applications


Rubberized Asphalt Chip Seal Issues — Bleeding @ Intersection


Rubberized Asphalt Chip Seal Issues — Improper Roller

Rubberized Asphalt Chip Seal Issues — Adhesion Failure

Rubberized Asphalt Chip Seal Issues — Streaking

Rubberized Asphalt Chip Seal Issues — Stone Kick Qut

RCS

- RIDOT RCS usage over 5 years:
 - 1,500,000 square yards @ 0.6 gal containing20% rubber
 - -1,500,000 lbs = 750 tons

Paver-Placed Elastomeric Surface Treatment (PPEST) — Definition

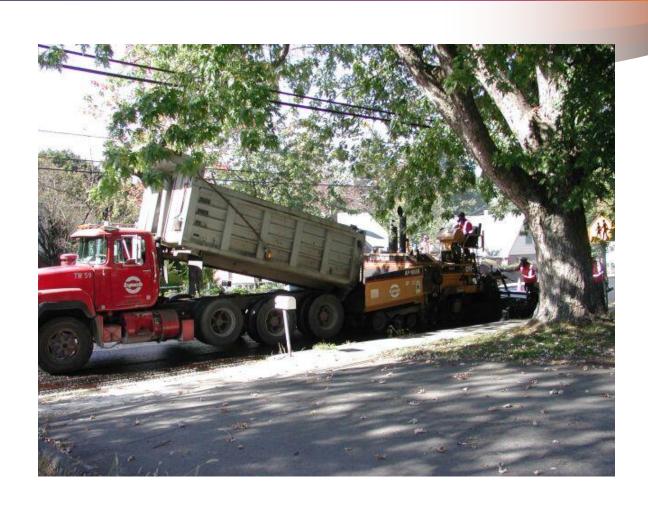
PPEST is a gap graded mix of 3/8 inch crushed aggregate and a chemically modified crumb rubber asphalt (CMCRA) binder*. The binder is PG 76-34 and contains a minimum 7% CMCR. The mix has a binder content of 6.0 to 7.5%. PPEST is:

- Produced in a Conventional hot mix plant
- Applied to a tack-coated surface
- Placed to a one-inch compacted thickness
- *Terminal Blend

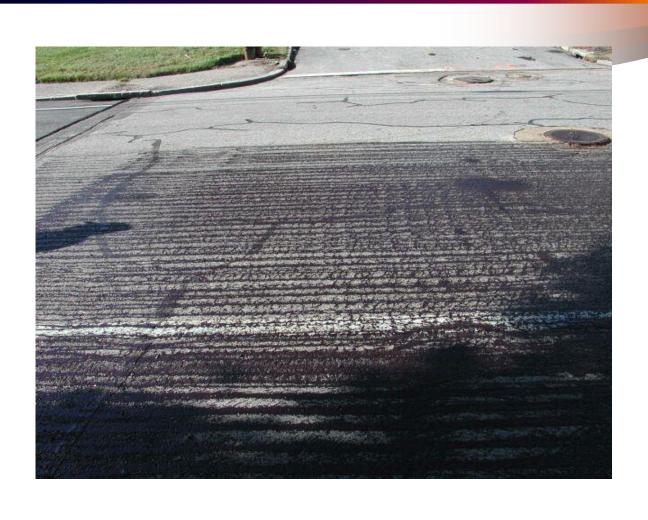
Elastomeric Surface Treatment - PPEST

Material/Properties of PPEST

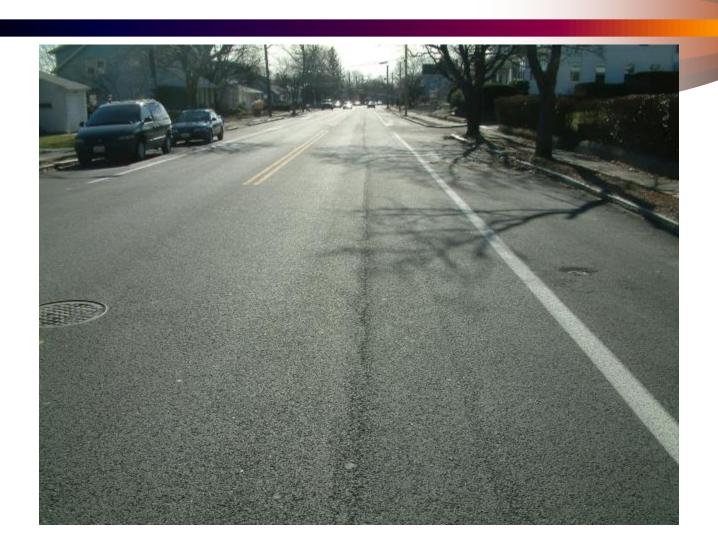
- Neat Asphalt PG 58 XX
- Crumb Rubber 7%
- Chemical Bonding Agent
- Asphalt Blend PG 76 34 Separation < 5%, PAV < 5000 KPa @ 7 °C, Elastic Recovery \geq 70% @ 4°C
- Aggregate Maximum size ½"
- Marshall Mix Design Stability 1000 lbs, Flow 8-16

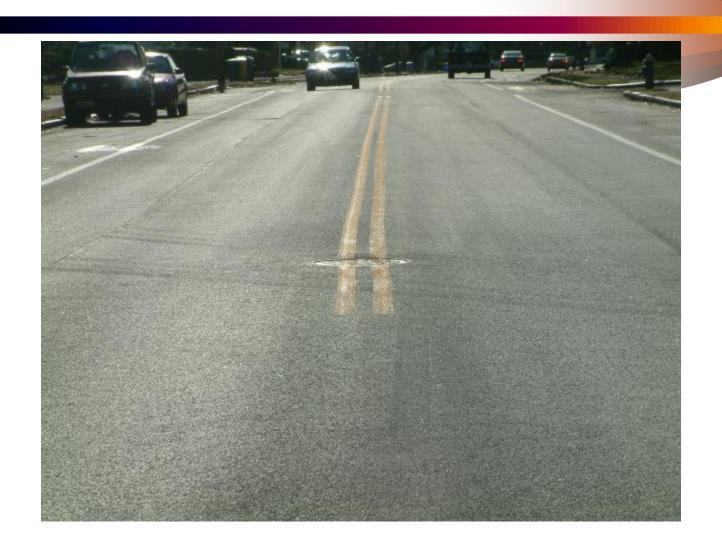

Paver-Placed Elastomeric Surface Treatment — Before

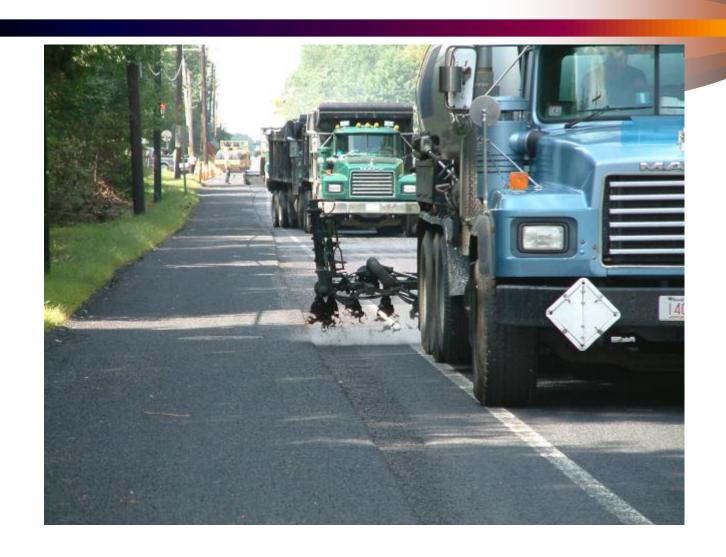
Paver-Placed Elastomeric Surface Treatment — After


Paver-Placed Elastomeric Surface Treatment — Train

Paver-Placed Elastomeric Surface Treatment — Roller


PPEST Issues — Tack Streaking


PPEST Issues — Tearing


PPEST Issues – Paving Joints

PPEST Issues – Appurtenances

Special Treatment SAMI (PPEST/RCS) - Tack Coat

Special Treatment SAMI (PPEST/RCS) - Paving

Rhode Island Use of Terminal Blended Crumb Rubber Asphalt

	Crumb Rubber
1] Crack Seal: 1998-2005 – General Roads 1999-2005 – Limited Access Highways	1290 tons 125 tons
2] Chip Seal: Rubber Asphalt Chip Seal 1999-2005 – General Roads	890 tons
3] Paver Placed Elastomeric Surface Treatment 2001-2005	155 tons
Total	2460 tons

Questions

