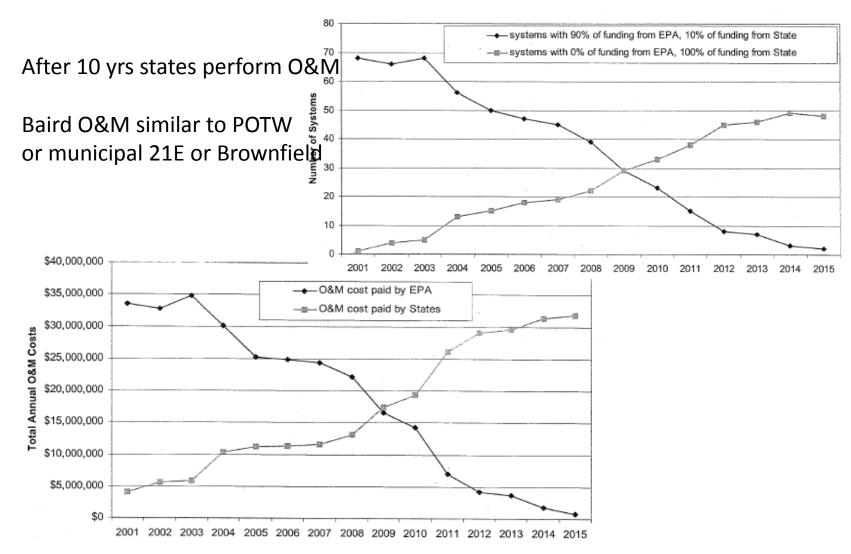
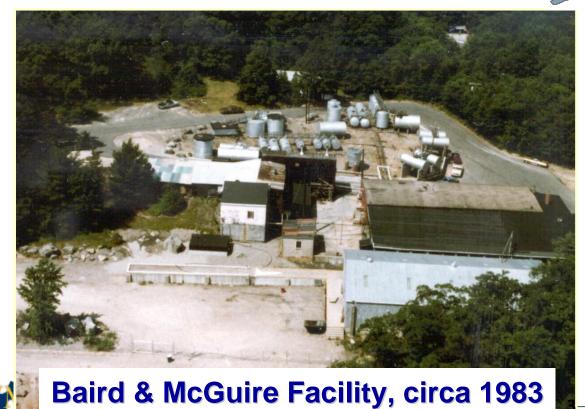
Powering Remedial Systems in Massachusetts

NEWMOA

"Moving Toward More Sustainable Remediation"


Wednesday, December 4, 2013 – Dayville, CT Thursday, December 5, 2013 – Westford, MA

Thomas M. Potter
MADEP's *Acting* Clean Energy Director

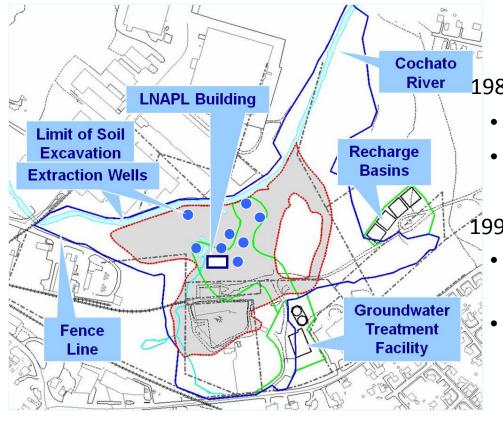

State Lead Groundwater Pump and Treat Systems

Source: Groundwater Pump and Treat Systems: Summary of Selected Cost and Performance Information at Superfund-financed Sites, 2001

Baird & McGuire History

- Former Chemical Manufacturing Facility
 Operated from 1912 to 1983 (70 years)
 Located in Holbrook, MA 32 Acres
- Site Listed on NPL in 1983

Massachusetts


1986 ROD: Groundwater, Soil, Sediment

- Incineration of Soils and River Sediments
 - From 1995 to 1998
 - 248,000 cubic yards of soil & sediment incinerated (12.5 acres of soil)
 - Residual ash buried on site (300 cubic yards failing TCLP stabilized)
- Pump and Treat System
 - Started 1993 to treat incineration dewatering and process flows
 - Effluent discharge to infiltration basins
 - EPA RSE done in 2001 and upgrades completed in 2004
 - Transferred to state (MassDEP) in 2004
 - MassDEP improvements on-going
 - Monitoring SVOC, Pesticides and Arsenic
 - Cleanup Levels set at drinking water standards, MCLs & State GW1
 - LNAPL discovered in 1996 and recovery from 1999 to present

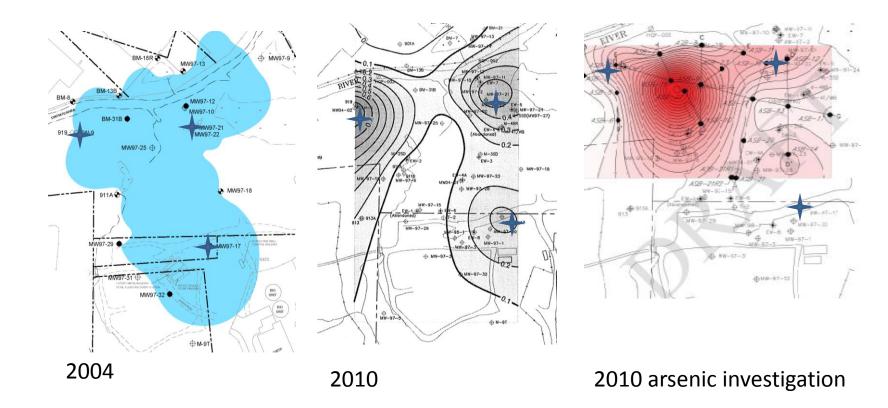
Site Map and Site Features

1989 ROD: Cochato River Sediment

- Dredged in 1994
- Wetland Restoration


1990 ROD: Municipal Water Supply

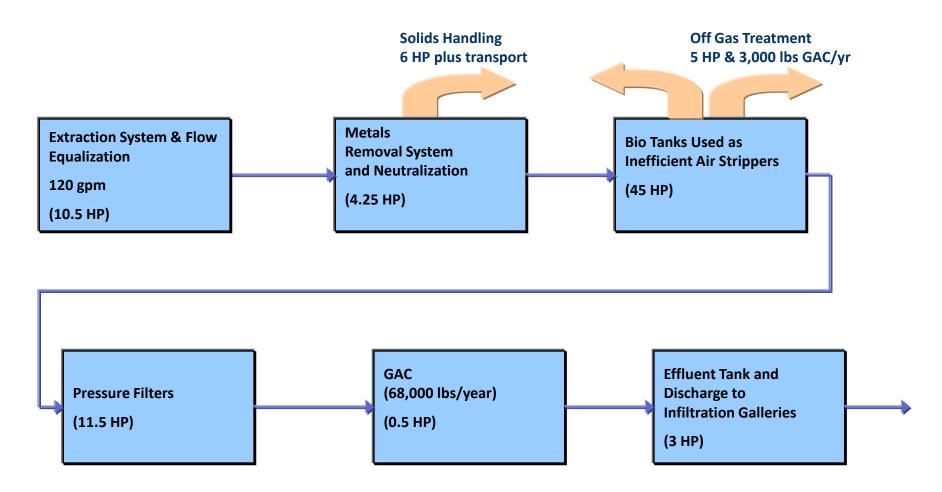
- Reopening of old well field to replace lost supply planned
- ESD issued in 2003 to expand existing water capacity at the Upper Reservoir/Great Pond


Remediation – 1996 to 2006*

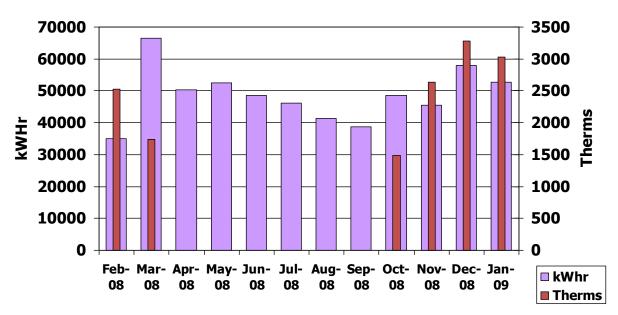
- A) Incinerator & Restored Wetland
- B) Groundwater Treatment Plant
- C) Bauer, Inc.
- D) Excavation
- E) Backfilled Incinerated Ash
- F) Cochato River

* Treatment must achieve groundwater restoration at drinking water standards, MCLs and GW1 \sim 10 \sim 10

Arsenic 2004 to 2010 (blue area above MCL of 10 ug/l)



State Operation of Treatment System Since 2004


Concerned with plant operations, site conditions, cost, energy and GHG

- Significant Cost Reductions through Automation and Reduction in Staff, Elimination of On-Site Laboratory and Reduction of Process and Site Monitoring - 2004 to 2006
- Energy Efficiency Opportunity Study (SAIC for MassDEP) 2006
- Utility Audits Phase One, National Grid (lights and sensors, VFDs on extraction, bio-clarifier, influent, filter press pumps) – 2008
- Carbon Footprint Analysis and CHP/GWSHP Study (US EPA OSRTI and MassDEP) – 2009
- Utility Audits Phase Two, National Grid (VFD on blower, energy efficient blower motor) – 2010
- <u>Feasibility Study of Third-Party Financing of 500 kW Solar PV</u> to Provide All Electricity Needs for the P&T Facility (possibly GWSHP) with Power Purchase Agreement – 2012
- Optimization Study (US EPA and MassDEP) Assess Remaining Duration of Clean-up and Alternatives to Pump & Treat – 2013
- Replacement and Relocation of Extraction Wells to Treat Arsenic
 Contamination On-going

Treatment Process Flow

Monthly Energy Usage

Energy Costs for 2008 - \$100 K Electricity and \$23 K Natural Gas

Prior Efforts on Energy and GHG Emissions

- 1. Energy Efficiency Opportunity Study 2006 SAIC for MassDEP
- 2. Utility Audits Phase One 2008 (lights and sensors, VFDs on extraction, bioclarifier, influent, filter press pumps)
- 3. CHP and Carbon Footprint Analysis 2009 (Combined EPA and MassDEP Study)
- 4. Utility Audits Phase Two 2010 (VFD on blower, energy efficient blower motor)

PFCs (CO2e)

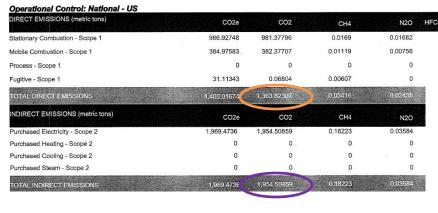
PFCs (CO2e)

Why Solar Baird? Continuation of On-Going Efforts

Climate Registry Information System MassDEP 2008 Report GHG Emissions Report

Purchased Cooling - Scope 2

Purchased Steam - Scope 2 TOTAL INDIRECT EMISSIONS


CRIS: Climate Registry Information System

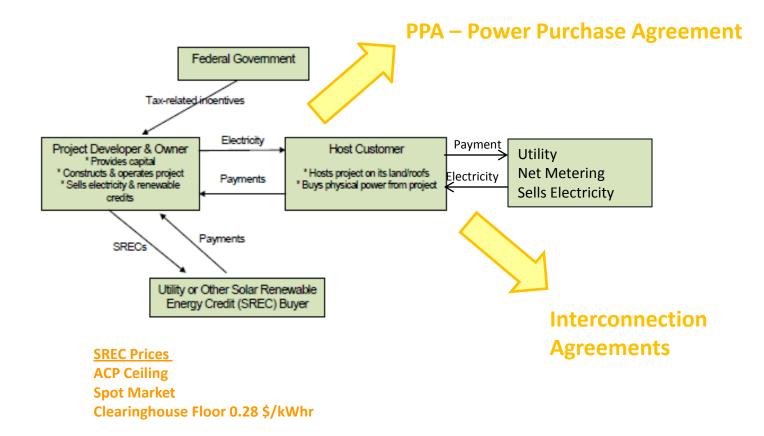
Entity Emissions Detailed Report

Massachusetts Department of Environmental Protection

3/12/2012 17:10:10 EDT

Cs (CO2e) PFCs (CO2e) SF6					
CRIS: Climate Registry In Entity Emissions Detailed Report Massachusetts Department of En (Public) 3/12/2012 17:10:10 EDT		-			
TOTAL EMISSIONS: MassDEP - 21E sit Does the Entity control the Facility's emissions? Yes Equity Share (%) N/A	te - Baird & McGi	uire			
DIRECT EMISSIONS (metric tons)	CO2e	CO2	CH4	N2O	HFCs (CO2e)
Stationary Combustion - Scope 1	90.33748	89.83166	0.0016	0.00152	0
Mobile Combustion - Scope 1	0	0	0	0	0
Process - Scope 1	0	0	0	0	0
Fugitive - Scope 1	0		0	0	0
TOTAL DIRECT EMISSIONS	90.33748	89.83166	0.0016	0.00152	0
INDIRECT EMISSIONS (metric tons)	CO2e	CO2	CH4	N2O	HFCs (CO2e)
Purchased Electricity - Scope 2	246.58	244.71067	0.02282	0.00449	0
Purchased Heating - Scope 2	0	0	0	0	0

- GHG Reductions 13% PV, 17% PV and GWSHP
- Potential for Savings -Third Party Financing



0.00449

0

Ω

Third Party Financing Model of Solar at Baird&McGuire

Investigation of Solar PV for Meeting all Energy Needs at Baird

Net Metering Solar Carve Out Program Third-Party Financing Model for Solar no up front capital expenditure potential savings on energy from day one

- Examined the Size of Available Area (GIS) and Used IMBY NREL Solar Estimator and DOER Financial Spreadsheet
- Issued an Request For Information to Gauge Interest
- Funded Feasibility Study to Verify Assumptions and Expected Benefits, and Obtain Support for Power Purchase Agreement (PPA) and Procurement
- PPA Duration remaining duration of the remedy? alternatives to P&T? Questions lead to Optimization Study completed May 2013

Why Renewable Energy for Operating Remedial Systems?

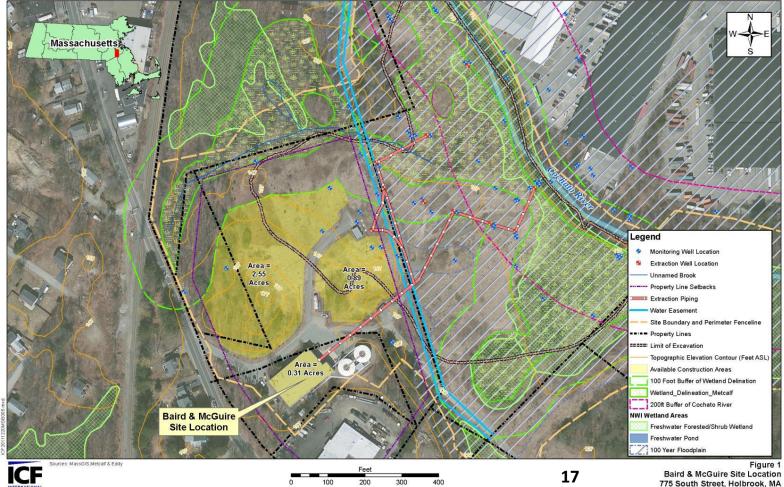
Where renewable energy projects are technically and financially feasible, they can provide:

- Reductions in projected annual electricity costs (vs. utility costs) for 20+ years
- Known electricity costs for 20+ years (i.e., budget predictability)
- Reductions in greenhouse gases vs. utility power (cleaner & local electricity generation)
- Jobs, some local and near term
- Productive re-use of land with few alternative uses
- Use of publicly funded incentives on public projects

Main Feasibility Study Topics

- How technical and financial feasibility review was conducted
- Results in benefits and risks of solar PV project at Baird & McGuire
- <u>Tips</u> for performing renewable energy feasibility reviews on contaminated sites

How: Going from Land Availability through Technical & **Financial Feasibility**


- Is there enough land to (a) produce a feasible project, and (b) meet the economic and environmental goals of the site owner/operator?
- If **no**, stop there OR find off-site project that can serve site and/or community via community net metering
- If yes,
 - Size and design the system to optimize electricity production, cost, and/or local materials (allowing for remediation access)
 - Determine preferred ownership structure
 - Third-party ownership brings access to federal tax benefits, among other features
 - Calculate project costs for different contract lengths
 - Review & mitigate project risks
 - SREC price risk can be a significant factor in many states

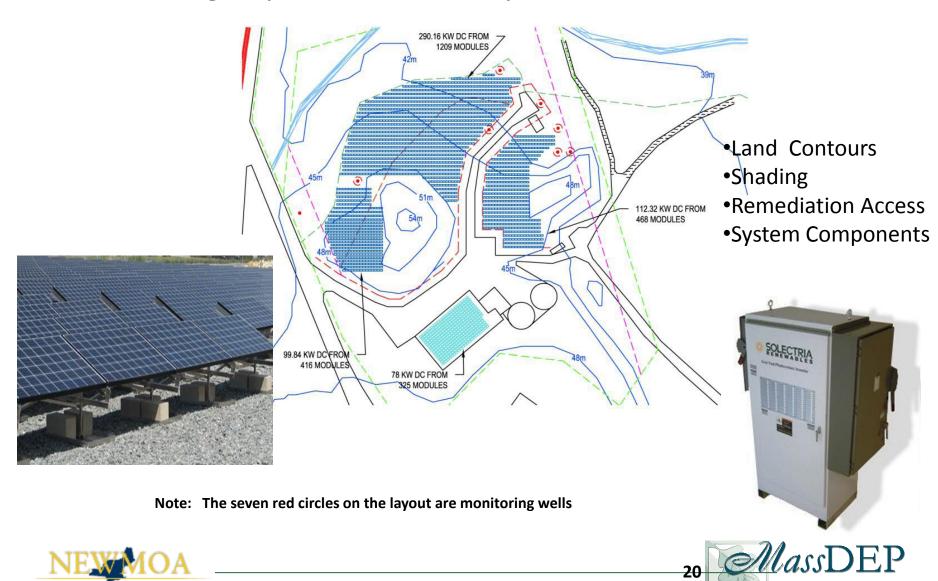
Wetlands – 100 ft buffer Cochato River – 200 ft buffer 100 year Floodplain Property Ownership - PRP **Setbacks and Easements** Remedy and Contamination

How: Site Limitations

How: Establish Optimum Solar Array Size (502.32 kW_{DC}) to Match On-Site Electricity Consumption

Note: On-site electricity consumption would increase with use of groundwater source heat pump for heating; solar array size could increase to match

Outside Lighting Upgrade Project (Update)


Replaced 3950 W Existing Lights High Pressure Sodium with 961 W LED Operation time 10 hrs/day

Electricity savings 10,910 kWhr per year ~1.7% of total annual load

Cost Savings 1,637 \$/year

How: Design Optimum Solar Array on Site

How: Financial Feasibility

- 626,900 kWh of output in year 1, degrading by 0.5% annually
 - 14.25% capacity factor in year 1
 - Local measurements of sunlight at site
 - Custom system design
 - System output from NREL System Advisor Model (SAM)
- System costs from then-recent bids for 500 kW_{DC} ground mounted systems using comparable equipment: \$3,914/kW including interconnection study & sales tax, or \$1.97 million total system cost
- Third-party financed using "power purchase agreement" (PPA) and net metering (eliminating some charges)
- Calculated PPA electricity rate for host (MassDEP) that provided sufficient (10% on equity) return for owner – DOER Financial Spreadsheet
- Assumed current federal solar incentives (investment tax credit and MACRS accelerated depreciation) stay in place

NEW Several additional assumptions using industry norms Mass ${
m DEP}$

Recent Installation Costs (Update) **DOER Spreadsheet Sensitive to Installation Costs**

Harwich	02645	561.440	TBD	Not Operational	7/23/2013	Information not yet provided	No Cost Data	No Cost Data
Tyngsborough	01879	555.000	TBD	Not Operational	7/23/2013	INO Electrical Service Inc.	\$1,554,000.00	\$2.80
Tisbury	02568	542.300	TBD	Not Operational	7/23/2013	Information not yet provided	No Cost Data	No Cost Data
Edgartown	02539	541.200	TBD	Not Operational	7/23/2013	Information not yet provided	No Cost Data	No Cost Data
Tewksbury	01876	535.000	TBD	Not Operational	6/28/2013	The Green Stop, LLC	\$1,070,000.00	\$2.00
Duxbury	02332	532.730	TBD	Not Operational	7/23/2013	Information not yet provided	No Cost Data	No Cost Data
Acushnet	02745	516.220	TBD	Not Operational	7/23/2013	Beaumont Solar Co.	\$1,367,983.00	\$2.65
Northampton	01060	507.200	TBD	Not Operational	6/28/2013	Nexamp, Inc.	No Cost Data	No Cost Data
Lancaster	01523	501.000	TBD	Not Operational	7/23/2013	Aslan Electric Inc.	\$2,000,000.00	\$3.99
Canton	02021	470.250	TBD	Not Operational	5/10/2013	Florence Electric	\$1,676,306.00	\$3.56
Fall River	02731	466.900	TBD	Not Operational	7/23/2013	ESI	\$1,400,000.00	\$3.00
Lee	01238	465.740	TBD	Not Operational	4/17/2013	Broadway Electrical Company	No Cost Data	No Cost Data
Barnstable	02601	462.550	TBD	Not Operational	4/17/2013	Broadway Electrical Company	No Cost Data	No Cost Data
Beverly	01915	461.160	TBD	Not Operational	7/23/2013	Altantic Boston Construction, Inc.	\$1,844,000.00	\$4.00

Results: Economics

PPA Contract Length	Lifetime Net Present Value (NPV) Savings to Site	% Savings to Site vs. Projected Utility Costs
10 years	\$69K	9%
15 years	\$279K	24%
20 years	\$438K	27%
25 years	\$654K	32%
30 years	\$887K	35%

Note: Results are very sensitive to Massachusetts Solar Renewable Credit (SREC) price (\$.285/kWh for first 10 years, which is net auction floor) and conventional utility price (4%/yr escalation) assumptions, panel degradation, O&M costs, etc.

NEW Opdate: SREC II Program – proposed declining SREC pricing and SREC factors for market sectors as SDEP

Results: Emissions Reductions

- During first year of solar PV system operation (626 MWh):
 - 518,328 pounds of CO₂
 - 48 pounds of CH₄
 - 9 pounds of N₂O
- During 20 years of solar PV system operation (11,960 MWh, accounting for performance degradation against constant utility fuel mix):
 - 9,902,880 pounds of CO₂
 - 921 pounds of CH₄
 - 179 pounds of N₂O

~ 10 million lbs of CO_{2eq}

Source: Climate Registry Information System emissions data for Baird & McGuire and emissions calculations do not consider life-cycle emissions of solar PV system production

Results: Jobs

- **During Construction and Installation:**
 - ~ 18 FTE Jobs on this ~ \$2 million capital project
 - Assumed (8 x 60 kW) inverters from Solectria (HQ in Lawrence, MA) and mounting system from Panel Claw (HQ in North Andover, MA)
 - Sharp crystalline-silicon panels (Buy American-compliant, manufactured in Tennessee)
- Annual O&M: 0.1 to 0.2 FTE Jobs

Note: Modeled using NREL Jobs and Economic Development Impact (JEDI) tool.

Project Risks

System Owner

- Liability protections
- System access/control
- Massachusetts SREC market
- Utility interconnection/permitting time
- National cost of solar (modules & federal tax incentives)

System Host (MassDEP)

- Inflexibility of long-term contract
- Net metering & conventional electricity rates
- Site damage during construction and operations
- Owner default
- Soft costs (professional labor) for feasibility and procurement

Note: Some of the risks can be mitigated in the PPA contract, while others are market based and cannot be easily mitigated

Tips: Overall

- Understand, and ideally improve, the electricity situation on-site before considering renewable energy supply
- High-quality data from the site are essential
 - See example categories on next page
- Understand differences between direct ownership and third-party contracts
- Document each step paves the way for procurement of successful projects and replication of the feasibility study
- Don't reinvent the wheel
 - US EPA Re-Powering America
 - US DOE/NREL
 - MassDFP & MassDOFR

THANK YOU!

Thomas M. Potter **Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup Acting Clean Energy Director**

MassDEP, One Winter Street, 6th Fl Boston, MA 02108 617-292-5628 Thomas.Potter@state.ma.us

Mass Department of Environmental Protection (MassDEP) Clean Energy Results Program:

http://www.mass.gov/dep/cleanenergy.htm

Mass Department of Energy Resources (DOER)

http://www.mass.gov/eea/grants-and-techassistance/guidance-technicalassistance/agencies-and-divisions/doer/

Massachusetts Clean Energy Center (CEC)

http://masscec.com/

Solar Photovoltaic Project Simple Financial Model RPS Solar Carve-Out Program v1.0 DATA ENTRY AND FINANCIAL SUMMARY Key Entry Cells Calculation Cells (Not for Entry) Select Taxable or Non-Taxable Entity Tax Assumptions **Project and Customer Cost Assumptions** Federal Tax Rate Solar Photovoltaic System Size Watts (DC STC) State Tax Rate Total System Cost/Watt 3.914 \$/Watt (DC STC) Effective Tax Rate Total System Cost Federal Tax Credit State Tax Deduction **CEC Rebate Assumptions** 5 Year Accelerated Depreciation Schedule (MACRS) \$/Watt (DC STC) Rehate\$ ner/Watt Depreciation Total Rebate Asset Basis Gross Cost 1,965,872 Rebate Less 50% of Federal Tax Credit (294,881) Project Performance and Savings/ Cost Assumptions Annual Net Capacity Factor kW (DC STC) to kWh AC 1,670,991 Asset Basis Annual Production Degradation Financing Assumptions Project Life % Financed w/ Cash Years % Financed w/ Loan Depreciation Life Years Electricity Revenue (Avoided Costs) S/kWh Loan Interest Rate Electricity Revenue (Avoided Costs) Annual Adjustor Loan Period Years (must be equal to or less than project life) Solar Renewable Energy Certificate (SREC) Auction Price 0.285 \$/kWh Net Cost SREC Auction Opt-In Term Years (must be equal to or less than project life) Customer Discount Rate SREC Revenue Annual Adjustor Loan SREC Contract Price \$/kWh SREC Contract Term Years (must be equal to or less than project life) Annual Operations and Maintenance Cost Factor 37.00 \$/kW/Year Annual Operations and Maintenance Cost 18,586 \$/Year Annual Operations and Maintenance Adjustor Solar Project Financial Analysis Summary Future Inverter Replacement Cost \$/Watt (DC STC) Net Present Value 250 Simple Payback (100% Cash only) Inverter Life, Replace Every X Years 16 Year (must be equal to or less than project life) Year 6 Estimated Return on Equity

	5	Start-Up	Year	Year	Year	Year	Year	Year	Year	Year	Year	Year
Project Output		0	1	2	3	4	5	6	7	8	9	10
nnual Generation (kWh)			626,900	623,765	620,646	617,543	614,455	611,383	608,326	605,284	602,258	599,24
INANCIAL SCHEDULES												
ICOME STATEMENT												
Electricity Revenue (Avoided Cost)		\$	56,484 \$	58,449 \$	60,483 \$	62,588 \$	64,766 \$	67,020 \$	69,352 \$	71,766 \$	74,263 \$	76,8
System Residual Value (category created for Baird & McGuire Site analysis)	\$	-									\$	40,1
SREC Auction Revenue		\$	178,666 \$	177,773 \$	176,884 \$	176,000 \$	175,120 \$	174,244 \$	173,373 \$	172,506 \$	171,644 \$	170,7
SREC Contract Revenue		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	-
Total Revenue (Avoided Costs)	\$	- \$	235,150 \$	236,222 \$	237,367 \$	238,588 \$	239,886 \$	241,264 \$	242,725 \$	244,272 \$	245,907 \$	287,8
eplace Inverter?		No	No	No	No	No	No	No	No	No	No	No
Operations & Maintenance Costs		\$	(18,586) \$	(19,143) \$	(19,718) \$	(20,309) \$	(20,919) \$	(21,546) \$	(22,192) \$	(22,858) \$	(23,544) \$	(24,2
nverter Replacement Cost		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- S	, .
Total Operating Expenses	\$	- \$	(18,586) \$	(19,143) \$	(19,718) \$	(20,309) \$	(20,919) \$	(21,546) \$	(22,192) \$	(22,858) \$	(23,544) \$	(24,2
EBITDA	\$	- \$	216,564 \$	217,079 \$		218,279 \$	218,967 \$	219,718 \$	220,533 \$	221,414 \$	222,363 \$	263,5
Federal Depreciation Expense	*	\$	(334,198) \$	(534,717) \$		(192,498) \$	(192,498) \$	(96,249) \$	- \$	- \$	- \$	
EBIT	\$	- S	(117,634) \$	(317,638) \$		25,780 \$	26,469 \$	123,469 \$	220,533 \$	221,414 \$	222,363 \$	263,
nterest Expense	•	s	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	200,0
EBT	\$	- S	(117,634) \$	Ψ	(103,181) \$	25,780 \$	26,469 \$	123,469 \$	220,533 \$	221,414 \$	222,363 \$	263,
ederal taxes saved/(paid)	\$	- \$	47,236 \$	117,252 \$		(2,911) \$	(3,133) \$	(37,062) \$	(71,012) \$	(71,295) \$	(71,601) \$	(84,
State taxes saved/(paid) [can not deduct federal depreciation expense]	Ψ.	- s	(17,325) \$	(17,366) \$		(17,462) \$	(17,517) \$	(17,577) \$	(17,643) \$	(17,713) \$	(17,789) \$	(21,0
Net Income	\$	- \$	(87,723) \$	(217,753) \$		5,407 \$	5,819 \$	68,830 \$	131,879 \$	132,405 \$	132,973 \$	157,6
Net income	Ψ	- •	(01,123) \$	(217,755) \$	(10,303) \$	3,407 \$	3,019 \$	00,030 φ	131,073 φ	132,403 φ	132,373 φ	137,0
ASH FLOW STATEMENT												
Cash From Operations												
Net Income	\$	- \$	(87,723) \$	(217,753) \$	(78,385) \$	5.407 \$	5.819 \$	68.830 \$	131.879 \$	132,405 \$	132.973 \$	157,6
Federal Depreciation Expense	\$	- \$	334.198 \$	534,717 \$	320.830 \$	192,498 \$	192.498 \$	96.249 \$	- \$	- \$	- S	,
Cash Flow From Operations	\$	- S	246,475 \$	316.964 \$		197.905 \$	198.317 \$	165,079 \$	131.879 \$	132,405 \$	132.973 \$	157,0
	•	·	., .	, ,	, - ,				. ,	. ,		- /-
Cash From Investing												
Installed PV Cost	\$	(1,965,872)										
One Time State Solar Investment Tax Deduction (Actual Cash Value)	\$	110.089										
One Time Federal Solar Investment Tax Credit	\$	589,762										
Cash Flow From Investing	\$	(1,266,022) \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	
Cash From Financing												
Loan Disbursement	\$	-										
Loan Repayment (Principle)		\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	
Cash Flow From Financing	\$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	- \$	
Annual Cash Flow	\$	(1,266,022) \$	246.475 \$	316,964 \$	242.445 \$	197,905 \$	198,317 \$	165.079 \$	131.879 \$	132.405 \$	132,973 \$	157,
Cumulative Cash Flow	\$	(1,266,022) \$.,		(460,137) \$	(262,232) \$	(63,916) \$	101,163 \$	233,042 \$	365,447 \$	498,420 \$	656,0
Militarité Gasti i IUW	a a	(1,200,022) \$	(1,013,341) \$	(102,303) \$	(-100,137) \$	(202,232) \$	(03,310) \$	101,103 \$	233,042 \$	JUJ,441 \$	430,420 \$	030,0
let Investment		(1,266,022) \$	(1.010.E47) ©	(700 E00) A	(460 127)	(262 222) 6	(63,916) \$	101,163 \$	233.042 \$	365,447 \$	409 420 6	656,0
Net Investment	\$ lyback Year	(1,266,022) \$ 6	(1,019,547) \$	(702,583) \$	(460,137) \$	(262,232) \$	(018,60)	101,163 \$	233,042 \$	365,447 \$	498,420 \$	0,000
Simple Pa	IyDack Teal	0						U				

Calendar Year	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PPA Project Year	1	2	3	4	5	6	7	8	9	10
			Groundwater Treatm						_	
Projected Electricity				,						
Consumption at GWTF Main										
Meter (kWh):	625,603	625,603	625,603	625,603	625,603	625,603	625,603	597,451	597,451	597,451
Projected All-In Utility Electricity										
Rate (\$/kWh):	\$0.11850	\$0.12324	\$0.12817	\$0.13330	\$0.13863	\$0.14417	\$0.14994	\$0.15594	\$0.16218	\$0.16866
Projected Utility Electricity Costs	4		4	4	4	4	4		4	4
(in absence of solar project) (\$):	\$74,134	\$77,099	\$80,183	\$83,391	\$86,726	\$90,195	\$93,803	\$93,165	\$96,892	\$100,768
		Estimated	d Groundwater Treat	ment Facility (GWT	F) Electricity Cos	ts (<u>with</u> solar pr	oject)			
Projected Solar Output On-Site										
(kWh):	626,900	623,766	620,647	617,543	614,456	611,383	608,327	605,285	602,258	599,247
Assumed Solar PPA Rate										
(\$/kWh):	\$0.09010	\$0.09370	\$0.09745	\$0.10135	\$0.10540	\$0.10962	\$0.11401	\$0.11857	\$0.12331	\$0.12824
Projected Solar PPA Payments										
by Site (\$):	\$56,484	\$58,449	\$60,483	\$62,588	\$64,766	\$67,020	\$69,352	\$71,766	\$74,263	\$76,848
Projected Physical Utility										
Electricity Supply Directly Offset										
by Solar Output (kWh):	125,121	125,121	125,121	125,121	125,121	125,121	125,121	119,490	119,490	119,490
Projected Loss Rate on Offset										
Utility Electricity Supply (\$/kWh):	\$0.01170	\$0.01217	\$0.01265	\$0.01316	\$0.01369	\$0.01423	\$0.01480	\$0.01540	\$0.01601	\$0.01665
Projected Losses to Site on	Q0.01170	QU.UILI7	φο.σ12σ3	Ç0.01310	Ç0.01303	Q0.01 123	\$0.01.00	φοισ15 ισ	Q0.01001	Ç0.01003
Utility Electricity Supply Directly										
Offset (\$):	\$1,464	\$1,522	\$1,583	\$1,647	\$1,713	\$1,781	\$1,852	\$1,840	\$1,913	\$1,990
Projected Net Metered Electricity	7-7:	7-,	7-7	7-7	7-7	7-7-0-	7-,	,,,,,,	7-,0-0	7-,000
(kWh):	500,482	500,482	500,482	500,482	500,482	500,482	500,482	477,961	477,961	477,961
Projected Loss Rate on Net	,		,					, ,	,	, ,
Metered Electricity (\$/kWh):	\$0.02000	\$0.02080	\$0.02163	\$0.02250	\$0.02340	\$0.02433	\$0.02531	\$0.02632	\$0.02737	\$0.02847
Projected Losses to Site on Net										
Metering Utility Credits (\$):	\$10,010	\$10,410	\$10,826	\$11,259	\$11,710	\$12,178	\$12,665	\$12,579	\$13,082	\$13,606
Projected Annual Solar										
Overproduction vs. Site										
Electricity Consumption (kWh):	1,297	0	0	0	0	0	0	7,834	4,807	1,796
Projected Avoided Utility Cost										
Wholesale Rate (\$/kWh):	\$0.03885	\$0.04040	\$0.04202	\$0.04370	\$0.04545	\$0.04727	\$0.04916	\$0.05112	\$0.05317	\$0.05530
Projected Avoided Utility										
Wholesale Payments to Site (\$):	(\$50)	\$0	\$0	\$0	\$0	\$0	\$0	(\$400)	(\$256)	(\$99)
Assumed Replacement REC					4.					
Charges to Site (\$):	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
Projected Total Electricity Costs										
at Site with Solar PV Project (\$):	\$67,907	\$70,382	\$72,893	\$75,494	\$78,189	\$80,979	\$83,870	\$85,784	\$89,003	\$92,344
3,000 (47)	,,		between GWTF's Esti					7/	7,	7/
Projected Savings (Loss) on										
Solar PPA vs. Conventional										
Utility Supply (\$):	\$6,227	\$6,717	\$7,290	\$7,896	\$8,538	\$9,216	\$9,933	\$7,381	\$7,888	\$8,424

