

- The cost of these failed/ underperforming remedies is large
- The costs of inefficient long term monitoring programs related to investigating sites with monitoring wells is large
- The costs of High Resolution Site Characterization, which allows one to avoid failed remedies, is small in comparison, but requires an up front investment to result in lower life cycle costs.

Takeaways from the Superfund Optimization Program

What Are We Getting Wrong?

HRSC is a response to in situ remedies

Groundwater Monitoring vs Characterization

TE TETRA TECH

How "Well" Do You Understand Site Conditions

TETRA TECH

Vertical Resolution: Interval and Spacing

A Profile Through a PCE Plume in Sandy Aquifer

The vertical spacing you use determines whether you understand the nature of the plume or not.

Point

TETRA TECH

Where We Are

- High Resolution Site Characterization Gaining Traction
- Diffusive Flux/Back Diffusion Largely Understood/Accepted
- New Tools and Methods
 - Direct Sensing LIF, MIP, Dye-LIF etc.
- Non-permanent Groundwater Sampling
- Coring of Unconsolidated Porous Media Underutilized (especially below the water table)
- Multi-Level Monitoring Approaches

7

TE TETRA TECH

Drilling/Direct Push Platforms

- Sonic methods
 - Very high frequency vibration Liquifaction
- Direct Push methods
 - Variable Percussion and downpressure
 - Geoprobe and similarCone Penetrometer Technology
- Auger/Rotary Methods
 - Low frequency percussion
 - Mud Rotary, Air Rotary
- Cable tool rig (rare in the Northeastern US)

Rotosonic Drilling Process

TE TETRA TECH

Some Characterization Approaches

High Resolution Site Characterization

Deployment of HRSC Tools

TE TETRA TECH

- Vadose zone
 - Soil gas sampling (passive, active, profile, temporal)
 - Screening tools (e.g., MIP)
 - Soil coring and profile sampling
- Saturated zone
 - Direct Sensing Screening tools for rapid reconnaissance of source zones, plume cores, hot spots (e.g., MIP, Laser Induced Fluoresence (LIF)). These tools coupled with EC and/or injection logging
 - Groundwater sample profiling of permeable zones (mobile porosity) coupled with injection logging
 - Soil coring and profile sampling for low-K zones (immobile porosity

Membrane Interface Probe: Rapid Direct Push VOC Screening Tool

TETRA TECH

Rapid screening of volatile organic compound (VOC) distributions for a more focused, higher resolution investigation

- MIP can very quickly generate a large data set
- MIP is capable of completing 150 to 250 + linear feet of exploration per day
- MIP is effective in both saturated and unsaturated zones
- MIP data are immediately available

MIP and Groundwater Concentration Correlations (Not Good)

Transect D									
Hole ID	1	2	3	4	5	6	7		
Visual Correlation	1	1	1	2	1	1	3		Average R ² for
ECD R ²	0.32	0.38	0.07	0.4	0.64	0.06	0.22		Transect $B = 0.3$ /
TVOC Range, ppm	0-3	0-12	0-40	0-16	0-20	0-15	0005		
Transect E									
Hole ID	10	11	12	13	14	15	16	17	Average R ² for
Visual Correlation	3	1	1	1	1	1	1	3	Transect $E = 0.72$
ECD R ²	0.09	0.62	0.72	0.64	0.92	0.53	0.66	0.01	
TVOC Range, ppm	0-3	0-8	0-50	0-15	0-12	0-20	0-6	0005	
Transect F									
Hole ID	19	20	21	22	23	24	25		Average R ² for
Visual Correlation	1	2	1	2	1	2	1		Transect $F = 0.37$
ECD R ²	0.13	0.58	0.58	0.01	0.38	0.77	0.92		
TVOC Range, ppm	0-6	0-10	04	0-4	0-16	0-16	01		
									D2 for A

Range of R^2 on individual holes = 0.06 to 0.92

Visual correlation Rankings; 1 = good, 2 = fair, 3 = poor.

Average R² for All Transects = 0.49 RITS 2014: High Resolution Site Characterization

TETRA TECH

MiHPT – Combined MIP and Hydraulic Profiling Tool

TETRA TECH

Laser Induced Fluorescence (LIF) Tools

- UVOST
 - Ultraviolet Optical Screening Tool Fuels and Oils
- TarGOST
 - Green Optical Screening Tool Coal Tar and Cresosote
- Dye-LIF
 - Hydrophobic dye injection LIF tool Chlorinated Solvents
- Geoprobe Optical Image Profiler
 - Fluoresence (but not laser induced) probe

UltraViolet Optical Screening Tool (UVOST)

TETRA TECH

TE TETRA TECH

Ultra Violet Optical Screening Tool (UVOST)

- Fuel NAPL
- Best for use where presence of NAPL is driver for investigation
- Detects 1 and 2-ring PAH
- Provides identification of fuel type
- Cannot see dissolved phase PAHs

UVOST Field Log: ID of Targets

Tar-specific Green Optical Screening Tool (TarGOST)

Green wavelength laser light causes fluorescence of multi-ring PAH in coal tar and creosote NAPLs

Dye LIF from Dakota Technologies Direct Detection of CI Solvent DNAPLs

TETRA TECH

Dye enhanced direct push LIF method for detection of chlorinated solvent DNAPLs

Courtesy of Dakota Technologies

Dye LIF Field Trials Successful

Dense Push Array at Highly Characterized DNAPL Source Zone

Post Processed 3D rendering of DNAPL Distribution from Dye-LIF Data

Courtesy of Dakota Technologies

Optical Image Profiler By Geoprobe

TE TETRA TECH

Downhole camera Two light sources: natural light and UV light Detector response and photos No ID of target through waveforms

TE TETRA TECH

TETRA TECH

Waterloo^{APS™} Integrated Direct Push Data Acquisition Direct Push Groundwater Profling and injection logging

Waterloo^{APS™} Configurations

TE TETRA TECH

TETRA TECH

Essential Information from Cores

- Geologic/hydrogeologic features
- Physical, chemical & microbial properties
- Contaminant mass distributions (high- & low-K zones)
- Contaminant phase distributions (detection of DNAPL)
- Concentration
 gradients/diffusive fluxes
- Effectiveness of remedial technologies

Coring Aquitards/Low K Zones

Small Scale Features are of Great Importance

17

Boring Logs

		143433.FI.MW	BORING NUMBER	: WAG	MW07S			
CH2IMIN		SOIL BORING LOG						
PROJECT :WNY Well Installation GROUND SURFACE ELEVATIO	s N (ft. MSL): 23.6	DRILLING CONTRACT	LOCATION : Wa	shington	Navy Yard, Washington DC			
DRILLING METHOD AND EQUI	MENT USED : 4	& 1/4" inner dia. Hollow St	em Auger & 3" inner dia	i. (acetat	e lined) split spoon powered by Geoprobe			
DEPTH TO WATER (ft. Bgs): 12	35 STAF	RT : 8/31/99	END : 8/31/99		LOGGER : Robert M. Pierpont			
DEPTH BELOW SURFACE (FT)	STANDARD	SOIL DES	CRIPTION	USCS	COMMENTS			
INTERVAL (FT)	PENETRATIO	N						
RECOVERY (IN) #/TYP	TEST RESULTS 6"-6"-6"-6"	ST SOIL NAME, USCS GROUP SYMBOL, COLOR, JLTS MOISTURE CONTENT, RELATIVE DENSITY, GR CONSISTENCY, SOIL STRUCTURE, MINERAL OGY			DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS, AND INSTRUMENTATION. OVM (nom): Breathing Zone Above Hole			
		4" of Asphalt		(FILL)	ovin (ppin). Breaking zone habite hole			
- - 2								
_ 2'-4' 2' _ _ 4_		6"- Gravel w/ Sand. D. Bri v. moist. Gravel is w moderately graded. 8"- Sandy CLAY, light I is soft, dense, elastic, M 8"- Clayish SAND, Pale Br v. moist CLAY is soft, dense, w/ mi	own 5YR 2/2 ell graded. Sand is prown, 5YR 6/4, Clay Moist own 5YR 5/2, oderate elasticity	GW (FILL) CH (FILL) SC (FILL)	0.2ppm WAG - SB07 - 02 and WAG - SB22- 02 (DUP) collected for Lab.			
_ 4'-6' 1.5' 		4*-CLAY, wisome Sand, a Brown, 5YR 5/2, moderate dense, and elastic. 12*-CLAY, wisand and wo 5YR 6/4, but Grey brown, discolored. CLAY is soft, d Discoloration of soil is arou but no apparent odor press	nd little Gravel, Pale ly moist. CLAY is soft, od, Mainly light brown, 5YR 3/2, where ense, and eleastic. und wood, ent.	CH (FILL) CH (FILL)	0ppm Moist			

Criteria for a Successful Coring Tool

TE TETRA TECH

- 100% recovery and retention
 - allow the core to enter the core barrel (diameter, cutting shoe)
 - core must not expand in volume (clays) or fall out (sand)
 - Known depth of origin
- · Minimal disruption of the structure of the strata
- Retention of pore fluids
- Does not heat the core sample.

The core one sees at the surface should be as accurate a representation of the subsurface conditions as possible.

TE TETRA TECH

TETRA TECH

DT325 Cutting Shoes

Cutting shoes are designed for different conditions in the same way different drill bits are designed for different materials. If recoveries are poor consider different cutting shoes and core sizes

3.25 x 1.85-inch ID

Recovery: Diameter Coring Tool Trials at Chambers Works Site

TE TETRA TECH

Rock stuck in MC5 cutting shoe.

Recovery: MC5 100% in Course Sand & Gravel Coring Tool Trials at Chambers Works Site

TE TETRA TECH

Recovery at B003 Coring Tool Trials at Chambers Works Site

Deformation: Zapico at B003 Coring Tool Trials at Chambers Works Site

Deformation: MC5 at B003 Coring Tool Trials at Chambers Works Site

TE TETRA TECH

Deformation: DT325 at B049 Coring Tool Trials at Chambers Works Site

TETRA TECH

TE TETRA TECH

23

Deformation: Zapico at B006 Coring Tool Trials at Chambers Works Site

Summary of Ranking by Criteria

Coring Tool	Overall % Recovery	Deformation of Structure	Speed	Heat	Use of Drilling Fluid	Heave	Pore Fluid Retention	TOTAL SCORE
MC5	4	4	2	4	4	4		22
Zapico	2	2	1	4	4	4		17
DT325	1	3	3	4	4	1		16
Sonic	3	3	4	3	1	4		18

Ranking Score of 1 - 4. Score of 1 indicates the tool performed the worst of all the tools; 4 indicates the tool performed the best

Speed of sonic drilling is assumed: DT325 = 26 ft/hr; MC5 = 18 ft/hr; Zapico = 6.6 ft/hr Heat of sonic cores is assumed all others measured Lack of heave for sonic is due to use of water

Sonic Coring Issues at MMR Cape Cod

poor recovery

- flowing sands
- Iower friction w/ lexan liners?

TE TETRA TECH

- heaving conditions
 - water used to minimize effects

 approx. 4000 gal total (~20 gal/ft)
 - water flushes through cores
 - no check valve
 - significant negative bias for VOCs
- core samples highly disturbed
 - limited insight on detailed lithology
 - inadequate for VOC sampling

Mass Distribution Via Core Subsampling at MMR Cape Cod

TE TETRA TECH

Conclusions

- Collection of high quality cores is an essential component of site characterization
- Sonic is fast and can penetrate in nearly all conditions but quality of cores is not always good (heat, water use, deformation)
- · Geoprobe tools getting better and with more options.
- Tool performance varies across different strata use a variety of tools/don't rely on just one
- Details matter: cutting shoe diameter and ratio of tool OD to core OD affect recovery
- · If pore fluids are important keep cores vertical and capped
- Provide incentives for drillers to focus on quality cores rather than footage

Some Monitoring Approaches

Monitoring networks should only be installed once you know site conditions and contaminant distributions in detail

TETRA TECH

Groundwater Monitoring Wells

Building a well inside a HSA

Pre-packed well screens wrapped w/ ss mesh

Multi-Level Groundwater Monitoring Approaches

- PVC (sched 40, sched 80 etc)
- Stainless steel, wire wound
- Other
- Well inner diameter (typically 2-inch for MW)
- Screen length
- Screen slot size (based on formation particle size distribution
- Sand pack size (based on formation particle size distribution)

ASTM standard D5092, *Design and Installation of Ground Water Monitoring Wells in Aquifers*

TETRA TECH

Continuous Multichannel Tubing (CMT)

Waterloo System (Solinst)

Westbay System

