ANALYSIS OF PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS)

Jennifer Guelfo, PhD State Agencies Liaison, Brown SRP August 3, 2016

8/4/16 1

TOXICANT EXPOSURES IN RHODE ISLAND: Past, Present, and Future

Brown University Superfund Research Program

INTRODUCTION: PFAS IN THE NEWS

Perfluoroalkyl carboxylates:

Examples: m=2 PFBA m=4 PFHxA **m=6 PFOA** **Per**fluoroalkane sulfonates:

Examples: m=3 PFBS m=5 PFHxS **m=7 PFOS**

Per = fully fluorinated alkyl tail.

Perfluoroalkyl carboxylates:

Perfluoroalkane sulfonates:

Examples: m=3 PFBS m=5 PFHxS **m=7 PFOS**

Poly = partially fluorinated alkyl tail.

Polyfluoroalkyl substances:

Perfluoroalkyl carboxylates:

Examples: m=2 PFBA m=4 PFHxA m=6 PFOA

Perfluoroalkane sulfonates:

Examples: m=3 PFBS m=5 PFHxS **m=7 PFOS**

Polyfluoroalkyl substances:

m=5 6:2 FtS m=7 8:2 FtS

6

What is a precursor?

Polyfluroalkyl substances that can undergo transformation to form **per**fluoroalkyl acids

INTRODUCTION: CHEMISTRY AND USES³

PFAS characteristics:

- Chemically stable
- Thermally stable
- Hydrophobic/lipophobic
- Surfactant properties
- Recalcitrant in environment

 δ +
 δ

 C F

 • F electronegative, not polarizable

 • C-F bond strength

 • Weak intermolecular interactions

- Fluoropolymer manufacturing (e.g. polytetrafluoroethylene)
- Firefighting foams
- Electroplating, paper coating, stain/ water repellant, textiles, electronics, insecticides/herbicides, adhesives, etc.

OVERVIEW

- Sample preparation
- Sample analysis
- Laboratory QA/QC
- Standard methods
- Commercial labs
- Novel analytical tools
- Summary

SAMPLE PREPARATION

Solids extraction:

- Soils, plants, other biological tissue
- No direct analysis of solids
- Use solvent to extract compound off of solid, analyze extract
- Extraction methods vary

SAMPLE PREPARATION

Solids extraction:

- Soils, plants, other biological tissue
- No direct analysis of solids
- Use solvent to extract compound off of solid, analyze extract
- Extraction methods <u>vary</u>

Solid phase extraction (SPE):

- Load large volume onto cartridge,
- elute off into smaller, cleaner volume
- Concentrates sample
- Not always needed- direct, large volume injection
- Some methods use it, some do not ...

ANALYSIS: LC-MS/MS OVERVIEW⁴

Liquid chromatography tandem mass spectrometry (LC-MS/MS)

ANALYSIS: LC-MS/MS OVERVIEW

Liquid chromatography tandem mass spectrometry (LC-MS/MS)

Accepted tool for PFAS analysis

ANALYSIS: DATA AND QUANTIFICATION

Data analysis/quantification:

- Generally, concentrations determined by comparison of compound response to calibration curve
- Exact method of quantifying concentration <u>may differ between</u> <u>labs</u>
- Examples: external calibration, internal standard, isotope dilution

QUALITY ASSURANCE/QUALITY CONTROL

<u>Method blanks</u>: checks for contamination during sample preparation; ~2/30 samples + after elevated samples

<u>Laboratory control</u>: adds known amt. compound to clean matrix; ensures test method is working; ~1/30 samples

<u>Matrix spike</u>: adds known amt. compound to field sample; tests matrix interferences; ~1/30 samples

<u>Duplicate</u>: tests analytical precision; ~1/30 samples

<u>Calibration check</u>: Validates existing calibration; frequency varies e.g. 1/10 samples and at batch end for EPA 537

STANDARD METHODS FOR PFAS⁵⁻⁷

Method Name	Method 537	ASTM D7979-16	ASTM D7968-14
	Drinking	Water, influent/effluent	
Matrix	water	wastewater, sludge	Soil
		PFAA, n:3 acid, FTUCA,	PFAA, n:3 acid,
Compound Classes	PFAA, FASAA	FTCA	FTUCA, FTCA
Sample container	Polypropylene	Polypropylene	Polypropylene
Sample volume	250 mL	5 mL	2g, adjust if needed
Extraction	SPE	None	50:50 H₂O: MeOH
Filtering	None	Polypropylene	Polypropylene
Reporting Limits	2.9-14 ng/L	10-300 ng/L	25-750 ng/kg
Holding Times	14 days	28 days	28 days
	5 g/L buffer,		
Preservation	cooled <10°C	Cooled, <6°C	Cooled, <6°C
Quantification	Internal std.	External cal.+ recovery of is	sotope labeled PFAS

- PFAA = perfluoroalkyl acids
- n:3 acid = n:3 saturated acid
- FASAA = perfluoroalkyl sulfonamidoacetic acid
- FTUCA = fluorotelomer unsaturated carboxylic acid
- FTCA = flurotelomer carboxylic acid

COMMERCIAL LAB AVAILABILITY

Laboratory	Method	Matrices	Compound Classes	Aqueous RL*		
		Water, Solid,				
		Air, Tissue,	PFAA, FTS, FASA,			
Axys	Internal	Serum, Urine	FASAA, PAP, FTCA	1-80 ng/L		
	EPA 537 or	Water, Solid,				
Eurofins	direct injection	Tissue, Products	PFAA, FTS, FASAA	2-10 ng/L		
			PFAA, FTS, FASA,			
Test America	Mod EPA 537	Water, Solid	FASAA, FASE	2-100 ng/L		
		Water, Solid,	PFAA, FTS, FASA,			
Vista	Mod EPA 537	Tissue	FASE, FASAA	1-40 ng/L		
* Reporting limit (RL) range encompass all compound classes; RLs for all labs were below EPA HA						
levels for PFOS/PFOA						

- PFAA = perfluoroalkyl acids sulfonamidoethanol FTS = fluorotelomer sulfonates PAP = polyfluoroalkyl phosphate ${\color{black}\bullet}$ esters
 - FASA = perfluroalkyl sulfonamides ۲
 - FTCA = fluorotelomer carboxylic acid

- FASE = perfluoroalkyl
- FASAA = perfluoroalkyl sulfonamidoacetic acid
- FTUCA = fluorotelomer unsaturated carboxylic acid 18

OTHER ANALYTICAL TOOLS: TOP ASSAY⁸

Total oxidizable precursor assay:

- <u>Bulk</u> precursor quantification = total amt. precursors present
- Does *not* identify individual precursor compounds present

19

OTHER ANALYTICAL TOOLS: PIGE

Particle induced gamma-ray emission (PIGE):

- Spectroscopic measurement of ¹⁹F nuclei
- Measures *total* fluorine- helping to complete PFAS mass balance
- Applicable to soil, products (e.g. paper), geologic formations, etc.

SUMMARY

Summary

- Primary tool for detection/quantification: LC-MS/MS
- Sample extraction/preparation techniques vary
- Commercial availability of compound classes/matrices varies
- High potential for background issues \rightarrow QA/QC!

In the future

- Diversification of target compounds
- Need for comparison across labs/ methods
- Commercial development of novel techniques (e.g. TOP)

REFERENCES

- 1. Buck, Robert C., et al. "Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins." Integrated environmental assessment and management 7.4 (2011): 513-541.
- 2. Place, Benjamin J., and Jennifer A. Field. "Identification of novel fluorochemicals in aqueous film-forming foams used by the US military." *Environmental science* & technology 46.13 (2012): 7120-7127.
- 3. Kissa, Erik, ed. Fluorinated surfactants and repellents. Vol. 97. CRC Press, 2001.
- 4. McMaster, Marvin C. LC/MS: a practical user's guide. John Wiley & Sons, 2005.
- 5. Shoemaker, J. A. "Method 537. Determination of selected perfluorinated alkyl acids in drinking water by solid phase extraction and liquid chromatography/tandem mass spectrometry (LC/MS/MS)." (2009).
- 6. ASTM D7979-16 Standard Test Method for Determination of Perfluorinated Compounds in Water, Sludge, Influent, Effluent and Wastewater by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS), ASTM International, West Conshohocken, PA, 2016.
- 7. ASTM D7968-14 Standard Test Method for Determination of Perfluorinated Compounds in Soil by Liquid Chromatography Tandem Mass Spectrometry (LC/MS/MS), ASTM International, West Conshohocken, PA, 2014.
- 8. Houtz, Erika F., and David L. Sedlak. "Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff." *Environmental science* & technology 46.17 (2012): 9342-9349.
- 9. Srivastava, A., et al. "Determination of fluorine concentrations in soil samples using proton induced gamma-ray emission." Journal of Radioanalytical and Nuclear Chemistry 302.3 (2014): 1461-1464.